Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3860-3868.DOI: 10.16085/j.issn.1000-6613.2024-0878
• Energy processes and technology • Previous Articles
YANG Xinliu1(
), LIU Qiang1(
), CAO Qian2, CUI Yueming1, FANG Chaohe3
Received:2024-05-30
Revised:2024-07-19
Online:2025-08-04
Published:2025-07-25
Contact:
LIU Qiang
杨心柳1(
), 刘强1(
), 曹倩2, 崔岳铭1, 方朝合3
通讯作者:
刘强
作者简介:杨心柳(1999—),女,硕士研究生,研究方向为地热利用。E-mail:yxl@student.cup.edu.cn。
基金资助:CLC Number:
YANG Xinliu, LIU Qiang, CAO Qian, CUI Yueming, FANG Chaohe. Effect of reservoir seepage on heat transfer performance of a single-well downhole coaxial geothermal heat exchanger[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3860-3868.
杨心柳, 刘强, 曹倩, 崔岳铭, 方朝合. 储层渗流对单地热井同轴换热器取热特性的影响[J]. 化工进展, 2025, 44(7): 3860-3868.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0878
| 参数 | 数值 |
|---|---|
| 井深/m | 1800 |
| 外管管径/mm | 123 |
| 外管壁厚/mm | 10 |
| 内管管径/mm | 75 |
| 内管壁厚/mm | 7.5 |
| 外管壁热导率/W·m-1·K-1 | 4.5 |
| 0~200m新型保温材料内管热导率/W·m-1·K-1 | 0.05 |
| 200~800m无规共聚聚丙烯(PP-R)内管热导率/W·m-1·K-1 | 0.21 |
| 800~1760m PP-R内管热导率/W·m-1·K-1 | 0.24 |
| 1760~1800m 304不锈钢内管热导率/W·m-1·K-1 | 15 |
| 地热储层热导率/W·m-1·K-1 | 1.682 |
| 地热储层密度/kg·m-3 | 2631.5 |
| 地热储层恒压热容/J·kg-1·K-1 | 886.89 |
| 基础工况下进水温度/℃ | 5 |
| 基础工况下循环流量/m3·h-1 | 10 |
| 参数 | 数值 |
|---|---|
| 井深/m | 1800 |
| 外管管径/mm | 123 |
| 外管壁厚/mm | 10 |
| 内管管径/mm | 75 |
| 内管壁厚/mm | 7.5 |
| 外管壁热导率/W·m-1·K-1 | 4.5 |
| 0~200m新型保温材料内管热导率/W·m-1·K-1 | 0.05 |
| 200~800m无规共聚聚丙烯(PP-R)内管热导率/W·m-1·K-1 | 0.21 |
| 800~1760m PP-R内管热导率/W·m-1·K-1 | 0.24 |
| 1760~1800m 304不锈钢内管热导率/W·m-1·K-1 | 15 |
| 地热储层热导率/W·m-1·K-1 | 1.682 |
| 地热储层密度/kg·m-3 | 2631.5 |
| 地热储层恒压热容/J·kg-1·K-1 | 886.89 |
| 基础工况下进水温度/℃ | 5 |
| 基础工况下循环流量/m3·h-1 | 10 |
| [1] | 陈宏飞, 杨富鑫, 谭厚章, 等. 中深层地热地埋管管群换热性能模拟和布置优化[J]. 化工进展, 2024, 43(3): 1241-1251. |
| CHEN Hongfei, YANG Fuxin, TAN Houzhang, et al. Heat transfer performance simulation and optimization of deep borehole heat exchanger array[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1241-1251. | |
| [2] | 孙焕泉, 毛翔, 吴陈冰洁, 等. 地热资源勘探开发技术与发展方向[J]. 地学前缘, 2024, 31(1): 400-411. |
| SUN Huanquan, MAO Xiang, WU Chenbingjie, et al. Geothermal resources exploration and development technology: Current status and development directions[J]. Earth Science Frontiers, 2024, 31(1): 400-411. | |
| [3] | 宋先知, 许富强, 姬佳炎, 等. 多层合采油藏废弃井网取热性能评价[J]. 天然气工业, 2022, 42(4): 54-62. |
| SONG Xianzhi, XU Fuqiang, JI Jiayan, et al. Evaluation on the heat extraction performance of abandoned well pattern in multi-layer commingled production oil reservoirs[J]. Natural Gas Industry, 2022, 42(4): 54-62. | |
| [4] | 张哲菲, 刘洪涛, 刘攀峰, 等. 中深层地热地埋管实际运行影响因素研究[J]. 太阳能学报, 2022, 43(12): 503-509. |
| ZHANG Zhefei, LIU Hongtao, LIU Panfeng, et al. Study on actual operation and influencing factors of middle-deep geothermal buried pipe[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 503-509. | |
| [5] | 宋先知, 李根生, 王高升, 等. 中深层地热能取热技术研究进展[J]. 科技导报, 2022, 40(20): 42-51. |
| SONG Xianzhi, LI Gensheng, WANG Gaosheng, et al. Research progress on heat extraction technology for developing medium-deep geothermal energy[J]. Science & Technology Review, 2022, 40(20): 42-51. | |
| [6] | SHARMIN Tasnuva, KHAN Nazia Rodoshi, AKRAM Md Saleh, et al. A state-of-the-art review on geothermal energy extraction, utilization, and improvement strategies: Conventional, hybridized, and enhanced geothermal systems[J]. International Journal of Thermofluids, 2023, 18: 100323. |
| [7] | 李帅, 刘明言, 马永丽. 基于BP人工神经网络预测地热井中流体的结垢位置[J]. 化工进展, 2022, 41(11): 5761-5770. |
| LI Shuai, LIU Mingyan, MA Yongli. Prediction of scaling location of fluid in geothermal well based on BP artificial neural network[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5761-5770. | |
| [8] | MA Ling, ZHAO Yazhou, YIN Hongmei, et al. A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution[J]. Energy Conversion and Management, 2020, 204: 112308. |
| [9] | LUO Yongqiang, YU Jinghua, YAN Tian, et al. Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method[J]. Energy and Buildings, 2020, 212: 109829. |
| [10] | 蒋坤卿, 黄思浩, 李华山, 等. 单井增强型地热系统性能分析[J]. 化工进展, 2021, 40(5): 2536-2545. |
| JIANG Kunqing, HUANG Sihao, LI Huashan, et al. Performance analysis of single well enhanced geothermal system[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2536-2545. | |
| [11] | 苗国民, 雷海燕, 戴传山, 等. 耦合表面张力的封闭腔体内管外自然对流传热特性[J]. 化工进展, 2020, 39(S2): 26-35. |
| MIAO Guomin, LEI Haiyan, DAI Chuanshan, et al. Natural convection heat transfer characteristics of coupled surface tension outside the tube in a closed cavity[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 26-35. | |
| [12] | 郭志鹏, 卜宪标, 李华山, 等. 基于热-流-化耦合作用的单井增强地热系统性能分析[J]. 化工进展, 2023, 42(2): 711-721. |
| GUO Zhipeng, BU Xianbiao, LI Huashan, et al. Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 711-721. | |
| [13] | 马斌, 马跃征, 史琳. 孔隙特性参数对排驱过程影响的实验研究[J]. 化工学报, 2018, 69(8): 3436-3442. |
| MA Bin, MA Yuezheng, SHI Lin. Experimental study on pore characters effect on drainage process[J]. CIESC Journal, 2018, 69(8): 3436-3442. | |
| [14] | CHIASSON Andrew. Advances in modeling of ground-source heat pump systems[D]. Windsor: University of Windsor, 1999. |
| [15] | WITTE H J L, GELDER A J, SERRAO Marcello. Comparison of design and operation of a commercial UK ground source heat pump project[C]//1st International Conference on Sustainable Energy Technologies, 2022. |
| [16] | WITTE H J L. Geothermal response tests with heat extraction and heat injection: Examples of application in research and design of geothermal ground heat exchangers[J]. Europäischer Workshop über Geothermische response tests, 2001(31): 48-63. |
| [17] | WANG Huajun, QI Chengying, DU Hongpu, et al. Thermal performance of borehole heat exchanger under groundwater flow: A case study from Baoding[J]. Energy and Buildings, 2009, 41(12): 1368-1373. |
| [18] | 黄献文. 分层和渗流条件下套管式地埋管长期换热演化规律及优化设计研究[D]. 淮南: 安徽理工大学, 2022. |
| HUANG Xianwen. Research on long-term heat transfer evolution law and optimization design of coaxial borehole heat exchanger under stratification and seepage conditions[D]. Huainan: Anhui University of Science & Technology, 2022. | |
| [19] | LUO Jin, Jiasheng TUO, HUANG Wei, et al. Influence of groundwater levels on effective thermal conductivity of the ground and heat transfer rate of borehole heat exchangers[J]. Applied Thermal Engineering, 2018, 128: 508-516. |
| [20] | ZHAO Zilong, LIN Yufeng, STUMPF Andrew, et al. Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling[J]. Renewable Energy, 2022, 190: 121-147. |
| [21] | 王昌龙, 王鑫, 鲁进利, 等. 渗流作用下的中深层地埋管换热器传热分析[J]. 太阳能学报, 2023, 44(3): 304-310. |
| WANG Changlong, WANG Xin, LU Jinli, et al. Analysis of heat transfer of deep borehole heat exchanger considering groundwater seepage[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 304-310. | |
| [22] | 马玖辰, 易飞羽, 张秋丽, 等. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8): 4134-4145. |
| MA Jiuchen, YI Feiyu, ZHANG Qiuli, et al. Heat transfer characteristics of coaxial tubes type deep borehole heat exchanger in water-rich geothermal reservoir[J]. CIESC Journal, 2021, 72(8): 4134-4145. | |
| [23] | 刘媛媛, 耿直, 张元峰, 等. 单井U型地埋管换热器传热特性与热渗耦合特性分析[J]. 综合智慧能源, 2023, 45(4): 81-88. |
| LIU Yuanyuan, GENG Zhi, ZHANG Yuanfeng, et al. Analysis of heat transfer characteristics and thermal-permeability coupling characteristics of single U-tube borehole heat exchangers[J]. Integrated Intelligent Energy, 2023, 45(4): 81-88. | |
| [24] | 闫家泓, 王社教, 姚艳华, 等. 油区地热资源评价与开发利用实践[M]. 北京: 石油工业出版社, 2022. |
| YAN Jiahong, WANG Shejiao, YAO Yanhua, et al. Evaluation and development and utilization of geothermal resources in oil region[M]. Beijing: Petroleum Industry Press, 2022. | |
| [25] | 宋先知, 张逸群, 李根生, 等. 雄安新区地热井同轴套管闭式循环取热技术研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(9): 971-981. |
| SONG Xianzhi, ZHANG Yiqun, LI Gensheng, et al. Performance study of the downhole coaxial closed-loop heat exchange technology in Xiong’an New Area[J]. Journal of Tianjin University (Science and Technology), 2021, 54(9): 971-981. | |
| [26] | 徐琼辉, 马伟斌, 陈琦, 等. 深层干热岩温度场与孔隙率关系研究[J]. 化工进展, 2012, 31(S1): 376-379. |
| XU Qionghui, MA Weibin, CHEN Qi, et al. Research for relationship between temperature of hot dry rock and porosity[J]. Chemical Industry and Engineering Progress, 2012, 31(S1): 376-379. | |
| [27] | 车雯, 梁海峰, 孙国庆, 等. 天然气水合物沉积层渗流特性的模拟[J]. 化工进展, 2015, 34(6): 1576-1581. |
| CHE Wen, LIANG Haifeng, SUN Guoqing, et al. Simulation study on the seepage characteristics of natural gas hydrate sediment[J]. Chemical Industry and Engineering Progress, 2015, 34(6): 1576-1581. | |
| [28] | 曾龙, 雷海燕, 戴传山. 单相自然循环回路的强化对流传热特性[J]. 化工进展, 2020, 39(4): 1259-1266. |
| ZENG Long, LEI Haiyan, DAI Chuanshan. Heat transfer performance of a convection-enhanced heat transfer element—Single-phase natural circulation loop[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1259-1266. | |
| [29] | 刘朝阳, 孙心明, 胡平放, 等. 小型地埋管换热试验系统及试验研究[J]. 煤气与热力, 2018, 38(9): 13-17. |
| LIU Chaoyang, SUN Xinming, HU Pingfang, et al. Heat exchange test system and experimental study of small-scale buried pipe[J]. Gas & Heat, 2018, 38(9): 13-17. | |
| [30] | 李克文, 张金川, 贾霖. 油田区地热发电工程基础与应用[M]. 北京: 科学出版社, 2022. |
| LI Kewen, ZHANG Jinchuan, JIA Lin. Engineering fundamentals and application of geothermal power generation in oilfield areas[M]. Beijing: Science Press, 2022. |
| [1] | LIU Jianhong, LIU Dong, SHANG Fumin, YANG Kai, ZHENG Chaofan, CAO Xin. Heat transfer performance analysis of pulsating heat pipe heat exchanger with asymmetric structure [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3727-3736. |
| [2] | CAO Shuang, LIU He, GUO Jiaju, HU Chunxia, YANG Wolong, WU Xuehong. R245fa flow boiling heat transfer characteristics in enhanced tube with gradient porous coating [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3794-3803. |
| [3] | ZHANG Ruochen, WANG Jiarui, WANG Simin, ZHANG Zaoxiao. Dynamic collision behavior and energy dissipation mechanism of micron wet particles [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3718-3726. |
| [4] | ZHANG Chunhua, WANG Guoqing, ZHANG Lijun, LU Bona, ZHOU Cong, LIU Junjie. Twisted-tape-based heat transfer enhancement technology: Advances and challenges in vortex structure regulation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3163-3174. |
| [5] | DAI Guilong, LIU Yishuo, MU Longkun, GONG Lingchu. Optimization on coupled heat transfer model performance of cavity-shaped porous solar receivers [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3258-3270. |
| [6] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [7] | ZHOU Penghui, ZENG Lin, DAI Li, LI Jiale, CHEN Jianqi, LI Jianping, WANG Hualin. Numerical simulation of mixing characteristics of a micro-hydrocyclone mixer [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3280-3287. |
| [8] | CHEN Juhui, ZHANG Qian, LI Dan, LI Weikang, CHEN Ke, ZHOU Huan, ZHURAVKOV Michael, LAPATSIN Siarhel, JIANG Wenrui. Flow characterization of non-spherical particles based on DEM-PPM method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3382-3392. |
| [9] | ZHEN Xiaofei, YANG Tebo, DONG Ti, QI Yonghao, LIU Jia. Research progress on enhancing hydrate gas storage performance in porous media [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3413-3431. |
| [10] | HE Yijian, LIU Xiangkun, SHI Yao, DUAN Xuezhi. Catalyst particle shape design for ethane oxidative dehydrogenation to ethylene [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3497-3508. |
| [11] | MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937. |
| [12] | MENG Fanzhi, SUN Bing, YANG Zhe. Impact and risk assessment of feedstock substitution on new process safety in chemical production [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2955-2971. |
| [13] | SONG Yiqi, LI Xue, YE Mao, LIU Zhongmin. Particle-resolved lattice Boltzmann simulations for sedimentation of catalyst particles with endothermic reaction [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2984-2996. |
| [14] | WANG Lei, WANG Yan, GAN Yufeng, LUO Kai, FEI Hua, LUAN Yanding. Heat transfer characteristics of supercritical CO2 in different heated mini-channels under horizontal flow condition [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1945-1956. |
| [15] | WANG Jiaqi, LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun. Rhamnolipid-enhanced CO2 hydrate production [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1998-2007. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |