Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3258-3270.DOI: 10.16085/j.issn.1000-6613.2024-2071
• Special Column: Chemical process intensification • Previous Articles
DAI Guilong1,2(
), LIU Yishuo1, MU Longkun1, GONG Lingchu2
Received:2024-12-24
Revised:2025-02-20
Online:2025-07-08
Published:2025-06-25
Contact:
DAI Guilong
通讯作者:
戴贵龙
作者简介:戴贵龙(1983—),男,副教授,研究方向为太阳能高温热转换、辐射传热。E-mail:daiguilong611@126.com。
基金资助:CLC Number:
DAI Guilong, LIU Yishuo, MU Longkun, GONG Lingchu. Optimization on coupled heat transfer model performance of cavity-shaped porous solar receivers[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3258-3270.
戴贵龙, 刘益硕, 穆龙坤, 龚凌褚. 凹腔多孔介质吸热器耦合传热模型性能优化[J]. 化工进展, 2025, 44(6): 3258-3270.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2071
| 水平 | 因素A:开口半径R1/mm | 因素B:深度L1/mm | 因素C:底面半径R2/mm |
|---|---|---|---|
| 1 | 20 | 40 | 20 |
| 2 | 25 | 50 | 25 |
| 3 | 30 | 60 | 30 |
| 4 | 35 | 70 | 35 |
| 水平 | 因素A:开口半径R1/mm | 因素B:深度L1/mm | 因素C:底面半径R2/mm |
|---|---|---|---|
| 1 | 20 | 40 | 20 |
| 2 | 25 | 50 | 25 |
| 3 | 30 | 60 | 30 |
| 4 | 35 | 70 | 35 |
| 编号(形状) | 因素 | 优化目标 | |||
|---|---|---|---|---|---|
| A:R1/mm | B:L1/mm | C:R2/mm | η/% | Ts,max/K | |
| 1(圆柱) | 20 | 40 | 20 | 81.07 | 1201 |
| 16(渐缩) | 35 | 70 | 20 | 81.10 | 1088 |
| 13(圆柱) | 35 | 40 | 35 | 82.75 | 1557 |
| 15(渐缩) | 35 | 60 | 25 | 83.06 | 1266 |
| 5(圆柱) | 25 | 40 | 25 | 83.98 | 1491 |
| 14(渐缩) | 35 | 50 | 30 | 84.27 | 1434 |
| 11(渐缩) | 30 | 60 | 20 | 84.65 | 1180 |
| 9(圆柱) | 30 | 40 | 30 | 85.21 | 1260 |
| 12(渐缩) | 30 | 70 | 25 | 85.64 | 1117 |
| 6(渐缩) | 25 | 50 | 20 | 86.15 | 1291 |
| 2(渐扩) | 20 | 50 | 25 | 86.36 | 1235 |
| 10(渐扩) | 30 | 50 | 35 | 86.61 | 1462 |
| 3(渐扩) | 20 | 60 | 30 | 87.09 | 1097 |
| 4(渐扩) | 20 | 70 | 35 | 87.54 | 986 |
| 8(渐扩) | 25 | 70 | 30 | 88.05 | 1067 |
| 7(渐扩) | 25 | 60 | 35 | 88.35 | 1247 |
| 编号(形状) | 因素 | 优化目标 | |||
|---|---|---|---|---|---|
| A:R1/mm | B:L1/mm | C:R2/mm | η/% | Ts,max/K | |
| 1(圆柱) | 20 | 40 | 20 | 81.07 | 1201 |
| 16(渐缩) | 35 | 70 | 20 | 81.10 | 1088 |
| 13(圆柱) | 35 | 40 | 35 | 82.75 | 1557 |
| 15(渐缩) | 35 | 60 | 25 | 83.06 | 1266 |
| 5(圆柱) | 25 | 40 | 25 | 83.98 | 1491 |
| 14(渐缩) | 35 | 50 | 30 | 84.27 | 1434 |
| 11(渐缩) | 30 | 60 | 20 | 84.65 | 1180 |
| 9(圆柱) | 30 | 40 | 30 | 85.21 | 1260 |
| 12(渐缩) | 30 | 70 | 25 | 85.64 | 1117 |
| 6(渐缩) | 25 | 50 | 20 | 86.15 | 1291 |
| 2(渐扩) | 20 | 50 | 25 | 86.36 | 1235 |
| 10(渐扩) | 30 | 50 | 35 | 86.61 | 1462 |
| 3(渐扩) | 20 | 60 | 30 | 87.09 | 1097 |
| 4(渐扩) | 20 | 70 | 35 | 87.54 | 986 |
| 8(渐扩) | 25 | 70 | 30 | 88.05 | 1067 |
| 7(渐扩) | 25 | 60 | 35 | 88.35 | 1247 |
| 优化目标 | 因素 | ||
|---|---|---|---|
| A | B | C | |
| η | |||
| K1 | 3.420601 | 3.330014 | 3.329633 |
| K2 | 3.465237 | 3.433888 | 3.390439 |
| K3 | 3.421021 | 3.431493 | 3.446158 |
| K4 | 3.311755 | 3.423217 | 3.452385 |
| R | 0.153482 | 0.103874 | 0.122752 |
| Ts,max | |||
| K1 | 4519 | 5509 | 4760 |
| K2 | 5096 | 5422 | 5109 |
| K3 | 5019 | 4790 | 4858 |
| K4 | 5345 | 4258 | 5252 |
| R | 826 | 1251 | 492 |
| 优化目标 | 因素 | ||
|---|---|---|---|
| A | B | C | |
| η | |||
| K1 | 3.420601 | 3.330014 | 3.329633 |
| K2 | 3.465237 | 3.433888 | 3.390439 |
| K3 | 3.421021 | 3.431493 | 3.446158 |
| K4 | 3.311755 | 3.423217 | 3.452385 |
| R | 0.153482 | 0.103874 | 0.122752 |
| Ts,max | |||
| K1 | 4519 | 5509 | 4760 |
| K2 | 5096 | 5422 | 5109 |
| K3 | 5019 | 4790 | 4858 |
| K4 | 5345 | 4258 | 5252 |
| R | 826 | 1251 | 492 |
| [1] | HE Yaling, DU Shen, SHEN Sheng. Advances in porous volumetric solar receivers and enhancement of volumetric absorption[J]. Energy Reviews, 2023, 2(3): 100035. |
| [2] | BECKER M, FEND Th, HOFFSCHMIDT B, et al. Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers[J]. Solar Energy, 2006, 80(10): 1241-1248. |
| [3] | 李青, 白凤武, 张亚南. 碳化硅泡沫陶瓷空气吸热器性能数值模拟[J]. 化工学报, 2014, 65(S1): 217-222. |
| LI Qing, BAI Fengwu, ZHANG Yanan. Numerical simulation of heat transfer between air flow and ceramic foam in air receiver[J]. CIESC Journal, 2014, 65(S1): 217-222. | |
| [4] | SEDIGHI Mohammadreza, PADILLA Ricardo Vasquez, TAYLOR Robert A, et al. High-temperature, point-focus, pressurised gas-phase solar receivers: A comprehensive review[J]. Energy Conversion and Management, 2019, 185: 678-717. |
| [5] | AVILA-MARIN A L, FERNANDEZ-RECHE J, MARTINEZ-TARIFA A. Modelling strategies for porous structures as solar receivers in central receiver systems: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 15-33. |
| [6] | BEHZAD Masoud, HERRMANN Benjamin, CALDERÓN-MUÑOZ Williams R, et al. Thermo-structural analysis of a honeycomb-type volumetric absorber for concentrated solar power applications[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2022, 32(2): 598-615. |
| [7] | KRIBUS Abraham, GRAY Yonatan, GRIJNEVICH Michael, et al. The promise and challenge of solar volumetric absorbers[J]. Solar Energy, 2014, 110: 463-481. |
| [8] | BENOIT H, PÉREZ LÓPEZ I, GAUTHIER D, et al. On-Sun demonstration of a 750℃ heat transfer fluid for concentrating solar systems: Dense particle suspension in tube[J]. Solar Energy, 2015, 118: 622-633. |
| [9] | FEND Thomas, Robert PITZ-PAAL, REUTTER Oliver, et al. Two novel high-porosity materials as volumetric receivers for concentrated solar radiation[J]. Solar Energy Materials and Solar Cells, 2004, 84(1/2/3/4): 291-304. |
| [10] | CHEN Xue, XIA Xinlin, MENG Xianlong, et al. Thermal performance analysis on a volumetric solar receiver with double-layer ceramic foam[J]. Energy Conversion and Management, 2015, 97: 282-289. |
| [11] | ZAVERSKY Fritz, ALDAZ Leticia, Marcelino SÁNCHEZ, et al. Numerical and experimental evaluation and optimization of ceramic foam as solar absorber—Single-layer vs multi-layer configurations[J]. Applied Energy, 2018, 210: 351-375. |
| [12] | DU Shen, XIA Tian, HE Yaling, et al. Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution[J]. Applied Energy, 2020, 275: 115343. |
| [13] | CAPUANO Raffaele, FEND Thomas, STADLER Hannes, et al. Optimized volumetric solar receiver: Thermal performance prediction and experimental validation[J]. Renewable Energy, 2017, 114: 556-566. |
| [14] | Mahmoud ALI, RADY Mohamed, ATTIA Mohamed A A, et al. Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers[J]. Renewable Energy, 2020, 145: 1849-1861. |
| [15] | 戴贵龙, 夏雨婷, 谢林毅, 等. 半透明玻璃管束吸热芯聚集太阳光传输特性分析[J]. 太阳能学报, 2020, 41(7):222-226. |
| DAI Guilong, XIA Yuting, XIE Linyi, et al. Transferring performances of concentrated sunlight inside quartz glass pipe bundle absorber.[J]. Acta Energiae Solaris Sinica, 2020, 41(7):222-226. | |
| [16] | MENG Xianlong, XIA Xinlin, ZHANG Shunde, et al. Coupled heat transfer performance of a high temperature cup shaped porous absorber[J]. Energy Conversion and Management, 2016, 110: 327-337. |
| [17] | TENG Liang, XUAN Yimin. Thermal and hydrodynamic performance of a novel volumetric solar receiver[J]. Solar Energy, 2018, 163: 177-188. |
| [18] | LI Xiaolei, XIA Xinlin, SUN Chuang, et al. Performance analysis on a volumetric solar receiver with an annular inner window[J]. Renewable Energy, 2021, 170: 487-499. |
| [19] | LI Tao, XIE Lingtian, ZHAO Boyang, et al. Analysis on the effects of different receiver structures and porous parameters on the volumetric effects and heat transfer performance of porous volumetric solar receiver[J]. International Journal of Energy Research, 2023, 2023(1): 3289428. |
| [20] | LONI Reyhaneh, ASKARI ASLI-ARDEH E, GHOBADIAN B, et al. Numerical comparison of a solar dish concentrator with different cavity receivers and working fluids[J]. Journal of Cleaner Production, 2018, 198: 1013-1030. |
| [21] | DAABO Ahmed M, MAHMOUD Saad, AL-DADAH Raya K. The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications[J]. Energy, 2016, 114: 513-525. |
| [22] | LONI Reyhaneh, ASKARI ASLI-AREH E, GHOBADIAN B, et al. Research and review study of solar dish concentrators with different nanofluids and different shapes of cavity receiver: Experimental tests[J]. Renewable Energy, 2020, 145: 783-804. |
| [23] | DEHGHAN Maziar, JAMAL-ABAD Milad Tajik, RASHIDI Saman. Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers[J]. Energy Conversion and Management, 2014, 85: 264-271. |
| [24] | JIANG Peixue, REN Zepei. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model[J]. International Journal of Heat and Fluid Flow, 2001, 22(1): 102-110. |
| [25] | XIA Xinlin, CHEN Xue, SUN Chuang, et al. Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2017, 106: 83-90. |
| [26] | VILLAFÁN-VIDALES H I, ABANADES Stéphane, CALIOT Cyril, et al. Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver[J]. Applied Thermal Engineering, 2011, 31(16): 3377-3386. |
| [27] | CUNSOLO Salvatore, COQUARD Rémi, BAILLIS Dominique, et al. Radiative properties of irregular open cell solid foams[J]. International Journal of Thermal Sciences, 2017, 117: 77-89. |
| [28] | STASER J, BIRSS V, GOSTICK J, et al. Characterization of porous materials 6[M]. State of New Jersey, USA: The Electrochemical Society, 2014. |
| [29] | WU Zhiyong, CALIOT Cyril, FLAMANT Gilles, et al. Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers[J]. Solar Energy, 2011, 85(9): 2374-2385. |
| [30] | HEISEL Cyprien, CALIOT Cyril, CHARTIER Thierry, et al. Digital design and 3D printing of innovative SiC architectures for high temperature volumetric solar receivers[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111336. |
| [31] | 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005: 256. |
| LI Yunyan, HU Chuanrong. Experiment design and data processing[M]. Beijing: Chemical Industry Press, 2005: 256. |
| [1] | ZHU Fanglong, FENG Qianqian. Preparation and optical-thermal properties of infrared-transparent nylon porous membrane [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2215-2224. |
| [2] | SUN Shiwan, LI Xin, ZHOU Han. Review of radiative cooling paint and its applications in the fields of energy and environment [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4961-4969. |
| [3] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
| [4] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
| [5] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
| [6] | HU Zhihao, ZHANG Haojing, ZHOU Ye, WU Rui. Visualization observation of bubble behavior and performance impact analysis in efficient nickel based ordered porous electrodes [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 680-687. |
| [7] | XU Jinyang, HONG Fangjun, ZHANG Chaoyang. Effects of microporous copper surface parameters on pool boiling enhancement with self-induced jet impingement [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5381-5392. |
| [8] | KANG Peisen, GE Hongyu, LI Sitong, MU Lin, LIU Xiaohua. Influence of feed transport on the process in solar interfacial evaporation [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5467-5474. |
| [9] | XU Tao, WANG Yongjun, LIN Qisong, DAI Junming, ZHA Quanliang, LYU Wangyang, CHEN Wenxing. Viscosification properties of poly(butylene succinate) by melt polycondensation [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5663-5670. |
| [10] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
| [11] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
| [12] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
| [13] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
| [14] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
| [15] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |