Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3175-3189.DOI: 10.16085/j.issn.1000-6613.2024-1375
• Special Column: Chemical process intensification • Previous Articles
CHEN Shaowei1,2(
), CHEN Yi1,2, NIU Jiangqi1,3(
), LIU Tianqi1, HUANG Jianguo1,4, CHEN Huanhao2(
), FAN Xiaolei1,5(
)
Received:2024-08-21
Revised:2024-10-10
Online:2025-07-08
Published:2025-06-25
Contact:
NIU Jiangqi, CHEN Huanhao, FAN Xiaolei
陈少伟1,2(
), 陈奕1,2, 牛江奇1,3(
), 刘天奇1, 黄建国1,4, 陈焕浩2(
), 范晓雷1,5(
)
通讯作者:
牛江奇,陈焕浩,范晓雷
作者简介:陈少伟(1999—),男,博士研究生,研究方向为低温等离子体催化。E-mail:202462203055@njtech.edu.cn。
基金资助:CLC Number:
CHEN Shaowei, CHEN Yi, NIU Jiangqi, LIU Tianqi, HUANG Jianguo, CHEN Huanhao, FAN Xiaolei. Research progress and application prospects of dielectric barrier discharge plasma catalytic reactors[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3175-3189.
陈少伟, 陈奕, 牛江奇, 刘天奇, 黄建国, 陈焕浩, 范晓雷. 介质阻挡放电等离子体催化反应器研究进展及应用展望[J]. 化工进展, 2025, 44(6): 3175-3189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1375
| 化学反应 | 系统 | 催化剂 | 载气 | 甲烷转化率/% | 二氧化碳转化率/% | 特定能量输入/eV·分子-1 | 文献 |
|---|---|---|---|---|---|---|---|
| RWGS | FB-DBD | Pd2Ga/SiO2 | — | — | 60 | 2.2 | [ |
| La-Ni/Al2O3 | — | 10~50 | 10~40 | 1.52 | [ | ||
| DMR | FB-DBD | Ni/γ-Al2O3 | 83.7% Ar | 14.0~21.0 | 15.0~21.2 | 0.2~0.5 | [ |
| 5.5~36.5 | 5.6~36.5 | 0.4 | |||||
| 13.0~47.0 | 13.0~40.0 | 0.4 | |||||
| FB-DBD | γ-Al2O3 | 75.0% He | 9.1~12.0 | 4.5~6.1 | 1.5 | [ | |
| FB-DBD | Cu/Al2O3 | 95.0% He | 18.0~18.6 | 13.5~10.8 | 3.8 | [ | |
| Pd/Al2O3 | 17.4~16.2 | 11.2~8.8 | |||||
| FB-DBD | Pd/Al2O3 | 95.0% He | 8.8~35.8 | 5.0~23.3 | 2.3~7.6 | [ | |
| FSB-GAD | Ni/Al2O3 | 72.5% Ar | 11.8 | 11.2 | 0.6 | [ | |
| Ni/SiO2 | 10.2 | 9 | 0.2 | ||||
| 甲烷无氧偶联(NOCM) | 喷射床耦合滑动弧放电(SB-GAD) | Pt/Al2O3 | 96.2% Ar | 47~40 | — | 0.4~0.3 | [ |
| Al/Al2O3 | 54~48 | ||||||
SB-GAD (单相) | Pt/Al2O3 | 60.0% H2 | 12~24 | 0.6~1.3 | [ | ||
| Pd/Al2O3 | 12~17 | 0.6~1.0 | |||||
| Al2O3 | 4~19 | 0.5~0.7 | |||||
SB-GAD (三相) | Pt/Al2O3 | 7~15 | 0.3~0.8 | ||||
| Pd/Al2O3 | 6~16 | 0.3~1.0 | |||||
| Al2O3 | 11~21 | 0.4~1.0 | |||||
SB-GAD (单相) | Cu/Al2O3 | 60.0% H2 | 20 | 0.9 | [ | ||
| Ni/Al2O3 | 15 | ||||||
| Ag/Al2O3 | 19 | ||||||
| Pt/Al2O3 | 19 | ||||||
| Al2O3 | 19 | ||||||
SB-GAD (三相) | Pt/Al2O3 | 60.0% H2 | 7~15 | 0.3~0.8 | [ | ||
| Pd/Al2O3 | 6~16 | 0.3~1.0 | |||||
| Al2O3 | 12~21 | 0.4~1.0 |
| 化学反应 | 系统 | 催化剂 | 载气 | 甲烷转化率/% | 二氧化碳转化率/% | 特定能量输入/eV·分子-1 | 文献 |
|---|---|---|---|---|---|---|---|
| RWGS | FB-DBD | Pd2Ga/SiO2 | — | — | 60 | 2.2 | [ |
| La-Ni/Al2O3 | — | 10~50 | 10~40 | 1.52 | [ | ||
| DMR | FB-DBD | Ni/γ-Al2O3 | 83.7% Ar | 14.0~21.0 | 15.0~21.2 | 0.2~0.5 | [ |
| 5.5~36.5 | 5.6~36.5 | 0.4 | |||||
| 13.0~47.0 | 13.0~40.0 | 0.4 | |||||
| FB-DBD | γ-Al2O3 | 75.0% He | 9.1~12.0 | 4.5~6.1 | 1.5 | [ | |
| FB-DBD | Cu/Al2O3 | 95.0% He | 18.0~18.6 | 13.5~10.8 | 3.8 | [ | |
| Pd/Al2O3 | 17.4~16.2 | 11.2~8.8 | |||||
| FB-DBD | Pd/Al2O3 | 95.0% He | 8.8~35.8 | 5.0~23.3 | 2.3~7.6 | [ | |
| FSB-GAD | Ni/Al2O3 | 72.5% Ar | 11.8 | 11.2 | 0.6 | [ | |
| Ni/SiO2 | 10.2 | 9 | 0.2 | ||||
| 甲烷无氧偶联(NOCM) | 喷射床耦合滑动弧放电(SB-GAD) | Pt/Al2O3 | 96.2% Ar | 47~40 | — | 0.4~0.3 | [ |
| Al/Al2O3 | 54~48 | ||||||
SB-GAD (单相) | Pt/Al2O3 | 60.0% H2 | 12~24 | 0.6~1.3 | [ | ||
| Pd/Al2O3 | 12~17 | 0.6~1.0 | |||||
| Al2O3 | 4~19 | 0.5~0.7 | |||||
SB-GAD (三相) | Pt/Al2O3 | 7~15 | 0.3~0.8 | ||||
| Pd/Al2O3 | 6~16 | 0.3~1.0 | |||||
| Al2O3 | 11~21 | 0.4~1.0 | |||||
SB-GAD (单相) | Cu/Al2O3 | 60.0% H2 | 20 | 0.9 | [ | ||
| Ni/Al2O3 | 15 | ||||||
| Ag/Al2O3 | 19 | ||||||
| Pt/Al2O3 | 19 | ||||||
| Al2O3 | 19 | ||||||
SB-GAD (三相) | Pt/Al2O3 | 60.0% H2 | 7~15 | 0.3~0.8 | [ | ||
| Pd/Al2O3 | 6~16 | 0.3~1.0 | |||||
| Al2O3 | 12~21 | 0.4~1.0 |
| [1] | XIAO Dengming. Fundamental theory of streamer and leader discharge[M]//Gas Discharge and gas insulation. Berlin: Springer, 2016: 89-121. |
| [2] | 程易, 刘昌俊. 低温等离子体化工[M]. 北京: 化学工业出版社, 2020. |
| CHENG Yi, LIU Changjun. Low temperature plasma chemical engineering[M]. Beijing: Chemical Industry Press, 2020. | |
| [3] | NEYTS Erik C. Plasma-surface interactions in plasma catalysis[J]. Plasma Chemistry and Plasma Processing, 2016, 36(1): 185-212. |
| [4] | LIU Wenzheng, MA Chuanlong, ZHAO Shuai, et al. Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 035401. |
| [5] | LIU Wenzheng, NIU Jiangqi, ZHAO Shuai, et al. Study on atmospheric pressure glow discharge based on AC-DC coupled electric field[J]. Journal of Applied Physics, 2018, 123(2): 023303. |
| [6] | GO David B, POHLMAN Daniel A. A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps[J]. Journal of Applied Physics, 2010, 107(10): 103303. |
| [7] | Paweł MIERCZYŃSKI, Agnieszka MIERCZYNSKA-VASILEV, SZYNKOWSKA-JÓŹWIK Małgorzata I, et al. Plasma-assisted catalysis for CH4 and CO2 conversion[J]. Catalysis Communications, 2023, 180: 106709. |
| [8] | PIETANZA Lucia Daniela, GUAITELLA Olivier, AQUILANTI Vincenzo, et al. Advances in non-equilibrium CO2 plasma kinetics: A theoretical and experimental review[J]. The European Physical Journal D, 2021, 75(9): 237. |
| [9] | 陈金飞, 杜学森, 苏小军, 等. 基于负载型SBA-15催化剂的等离子体协同催化合成氨研究[J]. 能源环境保护, DOI:10.20078/j.eep.20240602 . |
| CHEN Jinfei, DU Xuesen, SU Xiaojun, et al. Research on plasma-synergized catalytic ammonia synthesis based on supported SBA-15 catalysts[J]. Energy Environmental Protection, DOI:10.20078/j.eep.20240602 . | |
| [10] | 许志成, 高宁博, 全翠, 等. 低温等离子体协同催化转化生物质气化焦油研究进展[J]. 化工进展, 2025, 44(6): 3432-3442. |
| XU Zhicheng, GAO Ningbo, QUAN Cui, et al. Research progress on synergistic catalytic conversion of biomass gasification tar by non-thermal plasma[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3432-3442. | |
| [11] | TENDERO Claire, TIXIER Christelle, TRISTANT Pascal, et al. Atmospheric pressure plasmas: A review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(1): 2-30. |
| [12] | 程鹤, 雷孝廷, 张文超, 等. 低温等离子体转化CO2及分解机理研究[J]. 高电压技术, 2024, 50(11): 5206-5218. |
| CHEN He, LEI Xiaoting, ZHANG Wenchao, et al. Study on the low-temperature plasma conversion of CO2 and decomposition mechanism[J]. High Voltage Technology, 2024, 50(11): 5206-5218. | |
| [13] | CHIROKOV A, GUTSOL A, FRIDMAN A. Atmospheric pressure plasma of dielectric barrier discharges[J]. Pure and Applied Chemistry, 2005, 77(2): 487-495. |
| [14] | MIAO Yu, YOKOCHI Alexandre, JOVANOVIC Goran, et al. Application-oriented non-thermal plasma in chemical reaction engineering: A review[J]. Green Energy and Resources, 2023, 1(1): 100004. |
| [15] | BUTTERWORTH T, ELDER R, ALLEN R. Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor[J]. Chemical Engineering Journal, 2016, 293: 55-67. |
| [16] | CHEN Guoxing, GODFROID Thomas, BRITUN Nikolay, et al. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge[J]. Applied Catalysis B: Environmental, 2017, 214: 114-125. |
| [17] | ZENG Yuxuan, TU Xin. Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: Effect of argon addition[J]. Journal of Physics D: Applied Physics, 2017, 50(18): 184004. |
| [18] | MA Xintong, LI Sirui, Maria RONDA-LLORET, et al. Plasma assisted catalytic conversion of CO2 and H2O over Ni/Al2O3 in a DBD Reactor[J]. Plasma Chemistry and Plasma Processing, 2019, 39(1): 109-124. |
| [19] | KIM Dae-Yeong, Hyungwon HAM, CHEN Xiaozhong, et al. Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation[J]. Journal of the American Chemical Society, 2022, 144(31): 14140-14149. |
| [20] | CHEN Xiaozhong, SHENG Zunrong, MURATA Sho, et al. CH4 dry reforming in fluidized-bed plasma reactor enabling enhanced plasma-catalyst coupling[J]. Journal of CO2 Utilization, 2021, 54: 101771. |
| [21] | CHEN Xiaozhong, KIM Hyun-Ha, NOZAKI Tomohiro. Plasma catalytic technology for CH4 and CO2 conversion: A review highlighting fluidized-bed plasma reactor[J]. Plasma Processes and Polymers, 2023, 21(1): 2200207. |
| [22] | MANOJ KUMAR REDDY P, MAHAMMADUNNISA Sk, SUBRAHMANYAM Ch. Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: A green approach for the treatment of pesticide contaminated water[J]. Chemical Engineering Journal, 2014, 238: 157-163. |
| [23] | SHAO Yan, GUO Hongwei, JI Zhaoqi, et al. Cellular foam-based trickle-bed DBD reactor for plasma-assisted degradation of tetracycline hydrochloride[J]. Separation and Purification Technology, 2023, 311: 123317. |
| [24] | ZHAO Xuesong, YANG Yinhai, CHEN Qi, et al. Insights into catalyst-free, highly effective degradation of pharmaceutical contaminant in aqueous solution by a dielectric barrier discharge system[J]. Separation and Purification Technology, 2023, 320: 124211. |
| [25] | ZHANG Longhui, ZHANG Zhen, ZHANG Dongxuan, et al. Hydrophilic surface modification of polypropylene by AC-DBD and NS-DBD[J]. Surfaces and Interfaces, 2024, 46: 104093. |
| [26] | LI Jiaxin, YAO Jianxiong, HE Feng, et al. Comparison of ozone production in planar DBD of different modes[J]. Plasma Chemistry and Plasma Processing, 2024, 44(2): 891-905. |
| [27] | Mária DOMONKOS, Petra TICHÁ, TREJBAL Jan, et al. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry[J]. Applied Sciences, 2021, 11(11): 4809. |
| [28] | UYTDENHOUWEN Y, VAN ALPHEN S, MICHIELSEN I, et al. A packed-bed DBD micro plasma reactor for CO2 dissociation: Does size matter?[J]. Chemical Engineering Journal, 2018, 348: 557-568. |
| [29] | OZKAN A, DUFOUR T, SILVA T, et al. The influence of power and frequency on the filamentary behavior of a flowing DBD—Application to the splitting of CO2 [J]. Plasma Sources Science and Technology, 2016, 25(2): 025013. |
| [30] | BOGAERTS A, TU X, WHITEHEAD J C, et al. The 2020 plasma catalysis roadmap[J]. Journal of Physics D:Applied Physics, 2020, 53: 443001. |
| [31] | GEORGE Adwek, SHEN Boxiong, CRAVEN Michael, et al. A review of non-thermal plasma technology: A novel solution for CO2 conversion and utilization[J]. Renewable & Sustainable Energy Reviews, 2021, 135: 109702. |
| [32] | VANDENBROUCKE Arne M, MORENT Rino, De GEYTER Nathalie, et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-54. |
| [33] | CHEN Shaowei, LIU Tianqi, NIU Jiangqi, et al. Plasma-catalytic CO2 methanation over Ni supported on MCM-41 catalysts: Effect of metal dispersion and process optimization[J]. Carbon Capture Science & Technology, 2024, 11: 100194. |
| [34] | TU X, WHITEHEAD J C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature[J]. Applied Catalysis B: Environmental, 2012, 125: 439-448. |
| [35] | Nuria GARCÍA-MONCADA, VAN ROOIJ Gerard, CENTS Toine, et al. Catalyst-assisted DBD plasma for coupling of methane: Minimizing carbon-deposits by structured reactors[J]. Catalysis Today, 2021, 369:210-220. |
| [36] | KANG Woo Seok, LEE Dae Hoon, LEE Jae-Ok, et al. Combination of plasma with a honeycomb-structured catalyst for automobile exhaust treatment[J]. Environmental Science & Technology, 2013, 47(19): 11358-11362. |
| [37] | TOAN NGUYEN Van, KHOE DINH Duy, MCHP LAN Nguyen, et al. Critical role of reactive species in the degradation of VOC in a plasma honeycomb catalyst reactor[J]. Chemical Engineering Science, 2023, 276: 118830. |
| [38] | NGUYEN Duc Ba, SHIRJANA Saud, HOSSAIN Md Mokter, et al. Effective generation of atmospheric pressure plasma in a sandwich-type honeycomb monolith reactor by humidity control[J]. Chemical Engineering Journal, 2020, 401: 125970. |
| [39] | MIZUSHIMA Takanori, MATSUMOTO Kazumi, SUGOH Jun-ichi, et al. Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis[J]. Applied Catalysis A: General, 2004, 265(1): 53-59. |
| [40] | LI Ting, Joamin GONZALEZ-GUTIERREZ, Ivan RAGUŽ, et al. Material extrusion additively manufactured alumina monolithic structures to improve the efficiency of plasma-catalytic oxidation of toluene[J]. Additive Manufacturing, 2021, 37: 101700. |
| [41] | ZHENG Minfang, YU Dongqi, DUAN Lianjie, et al. In-situ fabricated CuO nanowires/Cu foam as a monolithic catalyst for plasma-catalytic oxidation of toluene[J]. Catalysis Communications, 2017, 100: 187-190. |
| [42] | LI Juexiu, ZHANG Hongbo, YING Diwen, et al. In plasma catalytic oxidation of toluene using monolith CuO foam as a catalyst in a wedged high voltage electrode dielectric barrier discharge reactor: Influence of reaction parameters and byproduct control[J]. International Journal of Environmental Research and Public Health, 2019, 16(5): 711. |
| [43] | VENG Visal, TABU Benard, SIMASIKU Ephraim, et al. Design and characterization of a membrane dielectric-barrier discharge reactor for ammonia synthesis[J]. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1921-1940. |
| [44] | LI Claudia, LI Wenping, CHEW Jiuan Jing, et al. Oxygen permeation through single-phase perovskite membrane: Modeling study and comparison with the dual-phase membrane[J]. Separation and Purification Technology, 2020, 235: 116224. |
| [45] | ZHANG Junxing, ZHANG Zhenbao, CHEN Yubo, et al. Materials design for ceramic oxygen permeation membranes: Single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite[J]. Journal of Membrane Science, 2018, 566: 278-287. |
| [46] | HAN Ning, ZHANG Wei, GUO Wei, et al. Novel oxygen permeable hollow fiber perovskite membrane with surface wrinkles[J]. Separation and Purification Technology, 2021, 261: 118295. |
| [47] | ZHENG Qiankun, XIE Yaqiong, TAN Jinkun, et al. Coupling of dielectric barrier discharge plasma with oxygen permeable membrane for highly efficient low-temperature permeation[J]. Journal of Membrane Science, 2022, 641:119896. |
| [48] | HAYAKAWA Yukio, MIURA Tomonori, SHIZUYA Kota, et al. Hydrogen production system combined with a catalytic reactor and a plasma membrane reactor from ammonia[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9987-9993. |
| [49] | KAMBARA Shinji, HAYAKAWA Yukio, INOUE Yu, et al. Hydrogen production from ammonia using a plasma membrane reactor[J]. Journal of Sustainable Development of Energy, Water and Environment Systems, 2016, 4(2): 193-202. |
| [50] | Mostafa EL-SHAFIE. Hydrogen separation using palladium-based membranes: Assessment of H2 separation in a catalytic plasma membrane reactor[J]. International Journal of Energy Research, 2021, 46(3): 3572-3587. |
| [51] | WANG Xinrui, GUO Weisi, XU Shanshan, et al. Stainless steel membrane distributor-type dielectric barrier discharge plasma reactor for co-conversion of CH4/CO2 [J]. AICHE Journal, 2023, 69(7): e18059. |
| [52] | 杜长明, 孟凡刚, 韦献革. 等离子体流化床[M]. 杭州: 浙江大学出版社, 2021. |
| DU Changming, MENG Fangang, WEI Xiange. Plasma fluidized bed[M]. Hangzhou: Zhejiang University Press, 2021. | |
| [53] | WANG Qi, CHENG Yi, JIN Yong. Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst[J]. Catalysis Today, 2009, 148(3/4): 275-282. |
| [54] | BOUCHOUL Nassim, TOUATI Houcine, Elodie FOURRÉ, et al. Efficient plasma-catalysis coupling for CH4 and CO2 transformation in a fluidized bed reactor: Comparison with a fixed bed reactor[J]. Fuel, 2021, 288: 119575. |
| [55] | KROKER Thorsten, KOLB Torsten, SCHENK Andreas, et al. Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD[J]. Plasma Chemistry and Plasma Processing, 2012, 32(3): 565-582. |
| [56] | THORSTEN Kroker, TORSTEN Kolb, KRZYSZTOF Krawczyk, et al. Catalytic conversion of biogas in a fluidized bed reactor supported by a DBD[J]. Frontier of Applied Plasma Technology, 2010, 3(2):1-5. |
| [57] | Jennifer MARTIN-DEL-CAMPO, UCEDA Marianna, COULOMBE Sylvain, et al. Plasma-catalytic dry reforming of methane over Ni-supported catalysts in a rotating gliding arc—Spouted bed reactor[J]. Journal of CO2 Utilization, 2021, 46: 101474. |
| [58] | LEE H, SEKIGUCHI H. Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction[J]. Journal of Physics D:Applied Physics, 2011, 44(27):274008. |
| [59] | MŁOTEK M, SENTEK J, KRAWCZYK K, et al. The hybrid plasma-catalytic process for non-oxidative methane coupling to ethylene and ethane[J]. Applied Catalysis A: General, 2009, 366(2): 232-241. |
| [60] | Krzysztof SCHMIDT-SZAŁOWSKI, KRAWCZYK Krzysztof, Michat MŁOTEK. Catalytic effects of metals on the conversion of methane in gliding discharges[J]. Plasma Processes and Polymers, 2007, 4(7/8): 728-736. |
| [61] | Krzysztof SCHMIDT-SZAŁOWSKI, KRAWCZYK Krzysztof, SENTEK Jan, et al. Hybrid plasma-catalytic systems for converting substances of high stability, greenhouse gases and VOC[J]. Chemical Engineering Research & Design, 2011, 89(12): 2643-2651. |
| [62] | CAMELI Fabio, DIMITRAKELLIS Panagiotis, CHEN Taiying, et al. Modular plasma microreactor for intensified hydrogen peroxide production[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(5): 1829-1838. |
| [1] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
| [2] | DONG Bingyan, LI Zhendong, WANG Peixiang, TU Wenjuan, TAN Yanwen, ZHANG Qin. Performance and mechanism of the degradation of benzohydroxamic acid by DBD plasma-coupled BiOI catalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1565-1575. |
| [3] | WANG Siyi, LI Yuehui, GE Yujie, WANG Huanran, ZHAO Lulu, LI Xianchun. Gasification of sewage sludge and its model compounds with NTP-DBD: effect of atmosphere on product distribution and properties [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2150-2160. |
| [4] | ZHANG Wei, WANG Zongyu, GUO Yu, YANG Mengfei, LI Zhengkai, CHANG Chao, ZHANG Jifeng, JI Yulong. Research progress of NO x removal by combination of atmospheric pressure dielectric barrier discharge and catalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6644-6655. |
| [5] | TAN Xiao, QI Suitao, ZHOU Yiming, SHI Libin, CHENG Guangxu, YI Chunhai, YANG Bolun. Direct catalytic reduction of NO by bimetallic ferromanganese catalyst under non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5850-5857. |
| [6] | BI Wenfei, DAI Chengyi, LI Xuemei, HE Jianxun, ZHAO Binran, MA Xiaoxun. Synergistic catalysis of methane to light olefins by plasma and Cu-Pd/S-1 catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 227-236. |
| [7] | CHEN Huanhao, FAN Xiaolei. Review on non-thermal plasma (NTP) catalytic conversion of C1 molecules and its catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3034-3045. |
| [8] | LI Qinglin, SONG Tao, YANG Yong. Biomass-derived carbon materials for organic transformations [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1966-1982. |
| [9] | Yafei ZHAO, Kai YE, Ye ZHUANG, Jinbao ZHENG. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. |
| [10] | Huixiang DAI, Wenjing LU, Abbas YAWAR, Chao LI, Qian WANG. Removal of ammonia from simulated composting gas by double dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3801-3809. |
| [11] | Wenjun LIANG, Huipin SUN, Yuxue ZHU, Sida REN. Ozone formation in toluene degradation by plasma assisted catalysis [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2893-2899. |
| [12] | Chao LI. Research progress on VOCs degradation using dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1964-1973. |
| [13] | Chunyu WANG,Ling ZHU,Danyun XU,Qingyue LUO. Process parameters optimization for degradation of benzene by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 402-412. |
| [14] | Peng CHEN,Lei TAO,Yibing XIE,Mengxue GUO,Yixing MA,Xueqian WANG,Ping NING,Langlang WANG. Non-thermal plasma cooperating catalyst degradation of the volatile organic compounds: a review [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4284-4294. |
| [15] | Zongyu WANG,Hailang KUANG,Jifeng ZHANG,Lilin CHU,Yulong JI. Experimental of diesel engine denitration by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4755-4766. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |