Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3163-3174.DOI: 10.16085/j.issn.1000-6613.2024-1770
• Special Column: Chemical process intensification • Previous Articles
ZHANG Chunhua1(
), WANG Guoqing1(
), ZHANG Lijun1(
), LU Bona2,3, ZHOU Cong1, LIU Junjie1
Received:2024-11-03
Revised:2024-12-11
Online:2025-07-08
Published:2025-06-25
Contact:
WANG Guoqing, ZHANG Lijun
张春华1(
), 王国清1(
), 张利军1(
), 鲁波娜2,3, 周丛1, 刘俊杰1
通讯作者:
王国清,张利军
作者简介:张春华(1992—),男,博士,工程师,研究方向为过程强化、多相反应工程、CFD模拟。E-mail:zch.bjhy@sinopec.com。
基金资助:CLC Number:
ZHANG Chunhua, WANG Guoqing, ZHANG Lijun, LU Bona, ZHOU Cong, LIU Junjie. Twisted-tape-based heat transfer enhancement technology: Advances and challenges in vortex structure regulation[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3163-3174.
张春华, 王国清, 张利军, 鲁波娜, 周丛, 刘俊杰. 管内扭带强化传热技术:涡流结构调控的进展与挑战[J]. 化工进展, 2025, 44(6): 3163-3174.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1770
| 扭带构型 | 纳米流体 | 换热介质 | 雷诺数 | 性能评估 | 年份 | 文献 | ||
|---|---|---|---|---|---|---|---|---|
| 类型 | 粒径/nm | 体积分数/% | ||||||
| 常规扭带 | Al2O3 | 47 | 0~0.1 | 水 | 3500~8500 | 传热系数提高36.96%~44.71% 阻力系数增加120% | 2009 | [ |
| 0~0.5 | 10000~22000 | 传热系数提高42.2% 阻力系数增加126.6% | 2010 | [ | ||||
| 交替轴 | CuO | 30~50 | 0~0.7 | 水 | 830~1990 | 传热性能提高1380% 阻力系数增加1600% | 2011 | [ |
| 常规扭带 | Fe3O4 | 36 | 0~0.6 | 水 | 3000~22000 | 传热性能提高51.88% 阻力系数增加123.1% | 2012 | [ |
| 常规扭带 | CuO | 30~50 | 0~0.7 | 水 | 6200~24000 | 相较于波纹管 传热速率提高267% 阻力系数增加576% | 2012 | [ |
| 螺旋扭带 | CuO | 30 | 0~0.1 | 水 | 14000~33000 | 综合传热性能:0.94~1.22 | 2012 | [ |
| Al2O3 | 43 | 综合传热性能:0.87~1.2 | ||||||
| 常规扭带 | CuO | 50 | 0~0.5 | 水/丙二醇 | 1000~10000 | 传热性能提高76.06% 阻力系数增加26.57% | 2013 | [ |
| 常规扭带 | TiO2 | 30~50 | 0~1.0 | 水 | 8000~30000 | 传热性能提高81.1% 阻力系数增加150% | 2014 | [ |
| 异向四扭带 | TiO2 | 15 | 0~0.21 | 水 | 5400~15200 | 传热速率提高352% 阻力系数增加1170% | 2014 | [ |
| 螺旋扭带 | Al2O3 | <100 | 0.15~1 | 水 | 2400~5600 | 综合传热性能:1.46 | 2015 | [ |
| CNT(碳纳米管) | 20~30 | 综合传热性能:1.41 | ||||||
| 同向双扭带 | TiO2 | 15 | 0~0.21 | 水 | 5400~15200 | 综合传热性能:1.18 | 2015 | [ |
| 常规扭带 | CNT-Fe3O4 | 10~30 | 0~0.5 | 水 | 3000~22000 | 传热性能提高42.5% 阻力系数增加118% | 2015 | [ |
| 螺旋扭带 | Al2O3 | 20~50 | 0.5~2 | 水 | 200~2000 | 综合传热性能:0.83 | 2016 | [ |
| SiO2 | 综合传热性能:0.8 | |||||||
| 交替轴开孔扭带 | Cu | 100 | 0~1.5 | 水 | 5000~15000 | 传热性能提高200% 阻力系数提高446% | 2018 | [ |
| 自旋扭带 | TiO2 | 10 | 0~0.5 | 水 | 600~7000 | 传热性能提高101.6% | 2018 | [ |
| 常规扭带 | MgO | 20 | 0~0.6 | 水 | 5000~10000 | 传热性能提高136.6% 阻力系数增加187% | 2019 | [ |
| 螺旋扭带 | 石墨-SiO2 | 7~10 | 0~1.0 | 水 | 3400~11000 | 传热性能提高31.43% 阻力系数增加300% | 2019 | [ |
| 同向双扭带 | 石墨烯-Pt | — | 0~0.1 | 水 | 3000~20000 | 传热熵产降低14% | 2019 | [ |
| 螺旋扭带 | CuO | 22 | — | 水 | 4000~16000 | 传热性能提高约73% 阻力系数增加约29% | 2020 | [ |
| 自旋扭带 | 石墨烯 | — | 0~0.1 | 水 | 5000 | 最大熵产降低约87.38% | 2020 | [ |
| 自旋十字扭带 | 石墨烯 | — | 0~0.1 | 水 | 5000 | 最大熵产降低约80% | 2020 | [ |
| 螺旋扭带 | SiO2-TiO2 | 30 | 0~0.4 | 油 | — | 传热性能提高31%~89% | 2021 | [ |
| 异向双扭带 | MgO-MWCNT(多壁碳纳米管) | 38 | 0~2 | 油 | 2500~10000 | 综合传热性能:1.08~1.86 | 2021 | [ |
| 开孔扭带 | SiO2 | 30 | 0~5 | 水 | 7000~13000 | 传热性能提高55.97%~74.8% | 2021 | [ |
| 螺旋扭带 | MgO-Cu | — | 0~3 | 水 | 8000~32000 | 传热性能提高92.01%~94.70% 阻力系数增加387.11%~389.62% | 2022 | [ |
| 开孔扭带 | CuO | — | 0~4 | 水 | 10000~30000 | 综合传热性能:1.60 | 2022 | [ |
| 翅片扭带 | TiO2 | 15 | 0.05~0.15 | 水 | 5000~15000 | 综合传热性能:1.36 | 2022 | [ |
| 线圈缠绕扭带 | Fe2O3-fMWCNT(功能化多壁碳纳米管) | 25~50 | 0~0.03 | 水 | 4000~15000 | 传热性能提高43.94%~141.07% 阻力系数增加113% | 2023 | [ |
| 自旋扭带 | Mn-Zn | 10 | 6 | — | 10000~20000 | 传热性能提高305% | 2023 | [ |
| 侧面豁口扭带 | SiO2 | 33.75 | 0.05 | 水 | 6000~14000 | 传热性能提高87.73% 阻力系数增加637% | 2024 | [ |
| 三角状螺旋扭带 | Al2O3-MWCNT | 15~40 | 0~1 | 水/乙二醇 | 300~2000 | 综合传热性能:2.31 | 2025 | [ |
| 扭带构型 | 纳米流体 | 换热介质 | 雷诺数 | 性能评估 | 年份 | 文献 | ||
|---|---|---|---|---|---|---|---|---|
| 类型 | 粒径/nm | 体积分数/% | ||||||
| 常规扭带 | Al2O3 | 47 | 0~0.1 | 水 | 3500~8500 | 传热系数提高36.96%~44.71% 阻力系数增加120% | 2009 | [ |
| 0~0.5 | 10000~22000 | 传热系数提高42.2% 阻力系数增加126.6% | 2010 | [ | ||||
| 交替轴 | CuO | 30~50 | 0~0.7 | 水 | 830~1990 | 传热性能提高1380% 阻力系数增加1600% | 2011 | [ |
| 常规扭带 | Fe3O4 | 36 | 0~0.6 | 水 | 3000~22000 | 传热性能提高51.88% 阻力系数增加123.1% | 2012 | [ |
| 常规扭带 | CuO | 30~50 | 0~0.7 | 水 | 6200~24000 | 相较于波纹管 传热速率提高267% 阻力系数增加576% | 2012 | [ |
| 螺旋扭带 | CuO | 30 | 0~0.1 | 水 | 14000~33000 | 综合传热性能:0.94~1.22 | 2012 | [ |
| Al2O3 | 43 | 综合传热性能:0.87~1.2 | ||||||
| 常规扭带 | CuO | 50 | 0~0.5 | 水/丙二醇 | 1000~10000 | 传热性能提高76.06% 阻力系数增加26.57% | 2013 | [ |
| 常规扭带 | TiO2 | 30~50 | 0~1.0 | 水 | 8000~30000 | 传热性能提高81.1% 阻力系数增加150% | 2014 | [ |
| 异向四扭带 | TiO2 | 15 | 0~0.21 | 水 | 5400~15200 | 传热速率提高352% 阻力系数增加1170% | 2014 | [ |
| 螺旋扭带 | Al2O3 | <100 | 0.15~1 | 水 | 2400~5600 | 综合传热性能:1.46 | 2015 | [ |
| CNT(碳纳米管) | 20~30 | 综合传热性能:1.41 | ||||||
| 同向双扭带 | TiO2 | 15 | 0~0.21 | 水 | 5400~15200 | 综合传热性能:1.18 | 2015 | [ |
| 常规扭带 | CNT-Fe3O4 | 10~30 | 0~0.5 | 水 | 3000~22000 | 传热性能提高42.5% 阻力系数增加118% | 2015 | [ |
| 螺旋扭带 | Al2O3 | 20~50 | 0.5~2 | 水 | 200~2000 | 综合传热性能:0.83 | 2016 | [ |
| SiO2 | 综合传热性能:0.8 | |||||||
| 交替轴开孔扭带 | Cu | 100 | 0~1.5 | 水 | 5000~15000 | 传热性能提高200% 阻力系数提高446% | 2018 | [ |
| 自旋扭带 | TiO2 | 10 | 0~0.5 | 水 | 600~7000 | 传热性能提高101.6% | 2018 | [ |
| 常规扭带 | MgO | 20 | 0~0.6 | 水 | 5000~10000 | 传热性能提高136.6% 阻力系数增加187% | 2019 | [ |
| 螺旋扭带 | 石墨-SiO2 | 7~10 | 0~1.0 | 水 | 3400~11000 | 传热性能提高31.43% 阻力系数增加300% | 2019 | [ |
| 同向双扭带 | 石墨烯-Pt | — | 0~0.1 | 水 | 3000~20000 | 传热熵产降低14% | 2019 | [ |
| 螺旋扭带 | CuO | 22 | — | 水 | 4000~16000 | 传热性能提高约73% 阻力系数增加约29% | 2020 | [ |
| 自旋扭带 | 石墨烯 | — | 0~0.1 | 水 | 5000 | 最大熵产降低约87.38% | 2020 | [ |
| 自旋十字扭带 | 石墨烯 | — | 0~0.1 | 水 | 5000 | 最大熵产降低约80% | 2020 | [ |
| 螺旋扭带 | SiO2-TiO2 | 30 | 0~0.4 | 油 | — | 传热性能提高31%~89% | 2021 | [ |
| 异向双扭带 | MgO-MWCNT(多壁碳纳米管) | 38 | 0~2 | 油 | 2500~10000 | 综合传热性能:1.08~1.86 | 2021 | [ |
| 开孔扭带 | SiO2 | 30 | 0~5 | 水 | 7000~13000 | 传热性能提高55.97%~74.8% | 2021 | [ |
| 螺旋扭带 | MgO-Cu | — | 0~3 | 水 | 8000~32000 | 传热性能提高92.01%~94.70% 阻力系数增加387.11%~389.62% | 2022 | [ |
| 开孔扭带 | CuO | — | 0~4 | 水 | 10000~30000 | 综合传热性能:1.60 | 2022 | [ |
| 翅片扭带 | TiO2 | 15 | 0.05~0.15 | 水 | 5000~15000 | 综合传热性能:1.36 | 2022 | [ |
| 线圈缠绕扭带 | Fe2O3-fMWCNT(功能化多壁碳纳米管) | 25~50 | 0~0.03 | 水 | 4000~15000 | 传热性能提高43.94%~141.07% 阻力系数增加113% | 2023 | [ |
| 自旋扭带 | Mn-Zn | 10 | 6 | — | 10000~20000 | 传热性能提高305% | 2023 | [ |
| 侧面豁口扭带 | SiO2 | 33.75 | 0.05 | 水 | 6000~14000 | 传热性能提高87.73% 阻力系数增加637% | 2024 | [ |
| 三角状螺旋扭带 | Al2O3-MWCNT | 15~40 | 0~1 | 水/乙二醇 | 300~2000 | 综合传热性能:2.31 | 2025 | [ |
| [1] | ZHENG Nianben, YAN Fang, ZHANG Kang, et al. A review on single-phase convective heat transfer enhancement based on multi-longitudinal vortices in heat exchanger tubes[J]. Applied Thermal Engineering, 2020, 164: 114475. |
| [2] | JI Wentao, JACOBI Anthony M, HE Yaling, et al. Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2017, 111: 467-483. |
| [3] | MOUSA Mohamed H, MILJKOVIC Nenad, NAWAZ Kashif. Review of heat transfer enhancement techniques for single phase flows[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110566. |
| [4] | 林清宇, 王祝, 冯振飞, 等. 扭带结构影响管内传热与熵产的研究进展[J]. 化工进展, 2022, 41(11): 5709-5721. |
| LIN Qingyu, WANG Zhu, FENG Zhenfei, et al. Review progress on twisted tape structure for heat transfer and entropy generation in tube[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721. | |
| [5] | CONG Tenglong, WANG Bicheng, GU Hanyang. Numerical analysis on heat transfer enhancement of sCO2 in the tube with twisted tape[J]. Nuclear Engineering and Design, 2022, 397: 111940. |
| [6] | WHITHAM Jay M. The effect of retarders in fire tubes of steam boilers[J]. Transactions of the American Society of Mechanical Engineers, 1896, 17: 450-460. |
| [7] | ROYDS R. Heat transmission by radiation, conduction and convection[M]. New York: D. Van Nostrand, 1921. |
| [8] | KREITH Frank, MARGOLIS David. Heat transfer and friction in turbulent vortex flow[J]. Applied Scientific Research, Section A, 1959, 8(1): 457-473. |
| [9] | ABOLARIN S M, EVERTS M, MEYER J P. Heat transfer and pressure drop characteristics of alternating clockwise and counter clockwise twisted tape inserts in the transitional flow regime[J]. International Journal of Heat and Mass Transfer, 2019, 133: 203-217. |
| [10] | CHANG Shyy Woei, HUANG Bo Jyun. Thermal performances of tubular flows enhanced by ribbed spiky twist tapes with and without edge notches[J]. International Journal of Heat and Mass Transfer, 2014, 73: 645-663. |
| [11] | EIAMSA-ARD S, WONGCHAREE K, EIAMSA-ARD P, et al. Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1151-1161. |
| [12] | SAHA S K, DUTTA A. Thermohydraulic study of laminar swirl flow through a circular tube fitted with twisted tapes[J]. Journal of Heat Transfer, 2001, 123(3): 417-427. |
| [13] | EIAMSA-ARD S, SEEMAWUTE P. Decaying swirl flow in round tubes with short-length twisted tapes[J]. International Communications in Heat and Mass Transfer, 2012, 39(5): 649-656. |
| [14] | PIRIYARUNGROD N, EIAMSA-ARD S, THIANPONG C, et al. Heat transfer enhancement by tapered twisted tape inserts[J]. Chemical Engineering and Processing: Process Intensification, 2015, 96: 62-71. |
| [15] | EIAMSA-ARD S, WONGCHAREE K, SRIPATTANAPIPAT S. 3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes[J]. International Communications in Heat and Mass Transfer, 2009, 36(9): 947-955. |
| [16] | BUCAK Hakan, Fuat YıLMAZ. The current state on the thermal performance of twisted tapes: A geometrical categorisation approach[J]. Chemical Engineering and Processing: Process Intensification, 2020, 153: 107929. |
| [17] | GUO Jian, FAN Aiwu, ZHANG Xiaoyu, et al. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape[J]. International Journal of Thermal Sciences, 2011, 50(7): 1263-1270. |
| [18] | HE Yan, LIU Li, LI Pengxiao, et al. Experimental study on heat transfer enhancement characteristics of tube with cross hollow twisted tape inserts[J]. Applied Thermal Engineering, 2018, 131: 743-749. |
| [19] | SINGH Sanjay Kumar, KACKER Ruchin, CHAURASIYA Prem Kumar, et al. Correlations on heat transfer rate and friction factor of a rectangular toothed v-cut twisted tape exhibiting the combined effects of primary and secondary vortex flows[J]. International Communications in Heat and Mass Transfer, 2022, 139: 106503. |
| [20] | EIAMSA-ARD S, THIANPONG C, EIAMSA-ARD P. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes[J]. Experimental Thermal and Fluid Science, 2010, 34(1): 53-62. |
| [21] | CHOKPHOEMPHUN Suriya, PIMSARN Monsak, THIANPONG Chinaruk, et al. Thermal performance of tubular heat exchanger with multiple twisted-tape inserts[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 755-762. |
| [22] | LIU Xiaoya, LI Chun, CAO Xiaxin, et al. Numerical analysis on enhanced performance of new coaxial cross twisted tapes for laminar convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1125-1136. |
| [23] | LI Shijie, QIAN Zuoqin, WANG Qiang. Optimization of thermohydraulic performance of tube heat exchanger with L twisted tape[J]. International Communications in Heat and Mass Transfer, 2023, 145: 106842. |
| [24] | Smith EIAMSA-ARD, KIATKITTIPONG Kunlanan. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid[J]. Applied Thermal Engineering, 2014, 70(1): 896-924. |
| [25] | ZHANG Shaojie, LU Lin, WANG Qiuwang. Thermal-hydraulic characteristic of short-length self-rotating twisted tapes in a circular tube[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105157. |
| [26] | SHEIKHOLESLAMI M, ABOHAMZEH Elham, JAFARYAR M, et al. CuO nanomaterial two-phase simulation within a tube with enhanced turbulator[J]. Powder Technology, 2020, 373: 1-13. |
| [27] | PROMVONGE Pongjet. Thermal augmentation in circular tube with twisted tape and wire coil turbulators[J]. Energy Conversion and Management, 2008, 49(11): 2949-2955. |
| [28] | PROMVONGE P, EIAMSA-ARD S. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert[J]. International Communications in Heat and Mass Transfer, 2007, 34(7): 849-859. |
| [29] | YU Chulin, CUI Yulin, ZHANG Haiqing, et al. Comparative study on turbulent flow characteristics and heat transfer mechanism of a twisted oval tube with different twisted tapes[J]. International Journal of Thermal Sciences, 2022, 174: 107455. |
| [30] | BHATTACHARYYA Suvanjan, SAHA Sujoy Kumar. Thermohydraulics of laminar flow through a circular tube having integral helical rib roughness and fitted with centre-cleared twisted-tape[J]. Experimental Thermal and Fluid Science, 2012, 42: 154-162. |
| [31] | HONG Yuxiang, DENG Xianhe, ZHANG Lianshan. 3D numerical study on compound heat transfer enhancement of converging-diverging tubes equipped with twin twisted tapes[J]. Chinese Journal of Chemical Engineering, 2012, 20(3): 589-601. |
| [32] | HONG Yuxiang, ZHAO Lei, HUANG Yongchun, et al. Turbulent thermal-hydraulic characteristics in a spiral corrugated waste heat recovery heat exchanger with perforated multiple twisted tapes[J]. International Journal of Thermal Sciences, 2023, 184: 108025. |
| [33] | 刘文津, 张玉明, 李家州, 等. 典型石油热加工技术发展现状及展望[J]. 化工进展, 2024, 43(7): 3534-3550. |
| LIU Wenjin, ZHANG Yuming, LI Jiazhou, et al. State of the art and prospect of typical petroleum thermal processing technology[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3534-3550. | |
| [34] | PORGAR Sajjad, OZTOP Hakan F, SALEHFEKR Somayeh. A comprehensive review on thermal conductivity and viscosity of nanofluids and their application in heat exchangers[J]. Journal of Molecular Liquids, 2023, 386: 122213. |
| [35] | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
| KONG Lingfei, CHEN Yanpei, WANG Wei. Dynamic study of mesoscale structures of particles in gas-solid fluidization[J]. CIESC Journal, 2022, 73(6): 2486-2495. | |
| [36] | SHARMA K V, Syam SUNDAR L, SARMA P K. Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert[J]. International Communications in Heat and Mass Transfer, 2009, 36(5): 503-507. |
| [37] | Syam SUNDAR L, SHARMA K V. Turbulent heat transfer and friction factor of Al2O3 Nanofluid in circular tube with twisted tape inserts[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1409-1416. |
| [38] | WONGCHAREE Khwanchit, Smith EIAMSA-ARD. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis[J]. International Communications in Heat and Mass Transfer, 2011, 38(6): 742-748. |
| [39] | SYAM SUNDAR L, RAVI KUMAR N T, NAIK M T, et al. Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: An experimental study[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 2761-2768. |
| [40] | WONGCHAREE Khwanchit, Smith EIAMSA-ARD. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape[J]. International Communications in Heat and Mass Transfer, 2012, 39(2): 251-257. |
| [41] | SURESH S, VENKITARAJ K P, SELVAKUMAR P, et al. A comparison of thermal characteristics of Al2O3/water and CuO/water nanofluids in transition flow through a straight circular duct fitted with helical screw tape inserts[J]. Experimental Thermal and Fluid Science, 2012, 39: 37-44. |
| [42] | NAIK M T, Ranga JANARDANA G, Syam SUNDAR L. Experimental investigation of heat transfer and friction factor with water-propylene glycol based CuO nanofluid in a tube with twisted tape inserts[J]. International Communications in Heat and Mass Transfer, 2013, 46: 13-21. |
| [43] | AZMI W H, SHARMA K V, SARMA P K, et al. Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts[J]. International Journal of Thermal Sciences, 2014, 81: 84-93. |
| [44] | CHOUGULE Sandesh S, SAHU S K. Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts—A comparative study[J]. Chemical Engineering and Processing: Process Intensification, 2015, 88: 78-88. |
| [45] | EIAMSA-ARD S, KIATKITTIPONG K, JEDSADARATANACHAI W. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes[J]. Engineering Science and Technology, an International Journal, 2015, 18(3): 336-350. |
| [46] | SYAM SUNDAR L, SOUSA Antonio C M, SINGH Manoj Kumar. Heat transfer enhancement of low volume concentration of carbon nanotube-Fe3O4/water hybrid nanofluids in a tube with twisted tape inserts under turbulent flow[J]. Journal of Thermal Science and Engineering Applications, 2015, 7(2): 021015. |
| [47] | SADEGHI Omidreza, MOHAMMED H A, Marjan BAKHTIARI-NEJAD, et al. Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts[J]. International Communications in Heat and Mass Transfer, 2016, 71: 234-244. |
| [48] | NAKHCHI M E, ESFAHANI J A. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape[J]. Powder Technology, 2018, 339: 985-994. |
| [49] | QI Cong, WANG Guiqing, YAN Yuying, et al. Effect of rotating twisted tape on thermo-hydraulic performances of nanofluids in heat-exchanger systems[J]. Energy Conversion and Management, 2018, 166: 744-757. |
| [50] | Suseel Jai Krishnan S, NAGARAJAN P K. Influence of stability and particle shape effects for an entropy generation based optimized selection of magnesia nanofluid for convective heat flow applications[J]. Applied Surface Science, 2019, 489: 560-575. |
| [51] | DALKILIÇ Ahmet Selim, TÜRK Osman Alperen, MERCAN Hatice, et al. An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad-channel twisted tape inserts[J]. International Communications in Heat and Mass Transfer, 2019, 107: 1-13. |
| [52] | BAHIRAEI Mehdi, MAZAHERI Nima, ALIEE Faegheh. Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts[J]. Powder Technology, 2019, 345: 692-703. |
| [53] | CHAURASIA Shashank Ranjan, SARVIYA R M. Thermal performance analysis of CuO/water nanofluid flow in a pipe with single and double strip helical screw tape[J]. Applied Thermal Engineering, 2020, 166: 114631. |
| [54] | BAHIRAEI Mehdi, MAZAHERI Nima, DANESHYAR Mohammad Rasool. CFD analysis of second law characteristics for flow of a hybrid biological nanofluid under rotary motion of a twisted tape: Exergy destruction and entropy generation analyses[J]. Powder Technology, 2020, 372: 351-361. |
| [55] | BAHIRAEI Mehdi, MAZAHERI Nima, MOAYEDI Hossein. Entropy generation and exergy destruction for flow of a biologically functionalized graphene nanoplatelets nanofluid within tube enhanced with a novel rotary coaxial cross double-twisted tape[J]. International Communications in Heat and Mass Transfer, 2020, 113: 104546. |
| [56] | FARAHANI Somayeh Davoodabadi, FARAHANI Mohammad, GHANBARI Davood. Heat transfer from R134a/oil boiling flow in pipe: Internal helical fin and hybrid nanoparticles[J]. Chemical Engineering Research and Design, 2021, 175: 75-84. |
| [57] | ALNAQI Abdulwahab A, ALSARRAF Jalal, AL-RASHED Abdullah A A A. Hydrothermal effects of using two twisted tape inserts in a parabolic trough solar collector filled with MgO-MWCNT/thermal oil hybrid nanofluid[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101331. |
| [58] | WANG Yuxing, QI Cong, DING Zi, et al. Numerical simulation of flow and heat transfer characteristics of nanofluids in built-in porous twisted tape tube[J]. Powder Technology, 2021, 392: 570-586. |
| [59] | KHETIB Yacine, ALZAED Ali, ALAHMADI Ahmad, et al. Application of hybrid nanofluid and a twisted turbulator in a parabolic solar trough collector: Energy and exergy models[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101708. |
| [60] | ABIDI Awatef, EL-SHAFAY A S, DEGANI Mohamed, et al. Improving the thermal-hydraulic performance of parabolic solar collectors using absorber tubes equipped with perforated twisted tape containing nanofluid[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102099. |
| [61] | THIANPONG C, WONGCHAREE K, SAFIKHANI H, et al. Multi objective optimization of TiO2/water nanofluid flow within a heat exchanger enhanced with loose-fit delta-wing twisted tape inserts[J]. International Journal of Thermal Sciences, 2022, 172: 107318. |
| [62] | BALAGA Ravikiran, KOONA Ramji, TUNUGUNTLA Subrahmanyam. Heat transfer enhancement of the f-MWCNT- Fe2O3/Water hybrid nanofluid with the combined effect of wire coil with twisted tape and perforated twisted tape[J]. International Journal of Thermal Sciences, 2023, 184: 108023. |
| [63] | POUR RAZZAGHI Mohammad Javad, ASADOLLAHZADEH Muhammad, TAJBAKHSH Mohammad Reza, et al. Investigation of a temperature-sensitive ferrofluid to predict heat transfer and irreversibilities in LS-3 solar collector under line dipole magnetic field and a rotary twisted tape[J]. International Journal of Thermal Sciences, 2023, 185: 108104. |
| [64] | CHAURASIYA Prem Kumar, HEERAMAN Jatoth, SINGH Sanjay Kumar, et al. Exploring the combined influence of primary and secondary vortex flows on heat transfer enhancement and friction factor in a dimpled configuration twisted tape with double pipe heat exchanger using SiO2 nano fluid[J]. International Journal of Thermofluids, 2024, 22: 100684. |
| [65] | PAINULY Ayush, JOSHI Gaurav, NEGI Pankaj, et al. Experimental analysis of W/EG based Al2O3-MWCNT non-Newtonian hybrid nanofluid by employing helical tape inserts inside a corrugated tube[J]. International Journal of Thermal Sciences, 2025, 208: 109399. |
| [66] | MOKHTARI Mojtaba, HARIRI Saman, BARZEGAR GERDROODBARY M, et al. Effect of non-uniform magnetic field on heat transfer of swirling ferrofluid flow inside tube with twisted tapes[J]. Chemical Engineering and Processing: Process Intensification, 2017, 117: 70-79. |
| [67] | MOLKI Majid, BHAMIDIPATI Kanthi Latha. Enhancement of convective heat transfer in the developing region of circular tubes using corona wind[J]. International Journal of Heat and Mass Transfer, 2004, 47(19/20): 4301-4314. |
| [68] | ZHANG Shijie, XU Xiaoxiao, LIU Chao, et al. A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion[J]. Applied Energy, 2020, 269: 114962. |
| [69] | LI Wenguang, YU Zhibin, WANG Yi, et al. Heat transfer enhancement of twisted tape inserts in supercritical carbon dioxide flow conditions based on CFD and vortex kinematics[J]. Thermal Science and Engineering Progress, 2022, 31: 101285. |
| [70] | OKETOLA Temitayo, MWESIGYE Aggrey. Numerical investigation of the overall thermal and thermodynamic performance of a high concentration ratio parabolic trough solar collector with a novel modified twisted tape insert using supercritical CO2 as the working fluid[J]. Thermal Science and Engineering Progress, 2024, 51: 102592. |
| [71] | FAKHROLESLAM Mohammad, SADRAMELI Seyed Mojtaba. Thermal cracking of hydrocarbons for the production of light olefins: A review on optimal process design, operation, and control[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12288-12303. |
| [72] | FENG Song, CHENG Xiang, BI Qincheng, et al. Experimental investigation on convective heat transfer of hydrocarbon fuel in circular tubes with twisted-tape inserts[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118817. |
| [73] | CARRILLO Alejandro, WANG Guoqing, ZHANG Lijun, et al. Intensified heat transfer technology—CFD analysis to explain how and why IHT increases runlength in commercial furnaces[Z]. AIChE Spring Meeting and Global Congress on Process Safety. AntonioSan, Texas. 2010 |
| [74] | 王国清, 曾清泉. 乙烯裂解炉管强化传热[J]. 石油化工, 2001, 30(7): 528-530. |
| WANG Guoqing, ZENG Qingquan. Intensifying radiant coil’s heat transfer of cracking furnace[J]. Petrochemical Technology, 2001, 30(7): 528-530. | |
| [75] | 王国清, 周先锋, 石莹, 等. 乙烯裂解炉辐射段技术的研究进展及工业应用[J]. 中国科学: 化学, 2014, 44(11): 1714-1722. |
| WANG Guoqing, ZHOU Xianfeng, SHI Ying, et al. Research progress and industrial application of radiant section technology of ethylene cracking furnace[J]. Scientia Sinica Chimica, 2014, 44(11): 1714-1722. | |
| [76] | FAKHROLESLAM Mohammad, SADRAMELI Seyed Mojtaba. Thermal/catalytic cracking of hydrocarbons for the production of olefins; a state-of-the-art review Ⅲ: Process modeling and simulation[J]. Fuel, 2019, 252: 553-566. |
| [77] | 王娟, 何星晨, 李军, 等. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
| WANG Juan, HE Xingchen, LI Jun, et al. Simulation of heat transfer enhancement and flow resistance characteristics of twisted slice tubes with openings[J]. The Chinese Journal of Process Engineering, 2020, 20(5): 510-520. | |
| [78] | WANG Guoqing, ZHANG Lijun, ZHOU Xianfeng, et al. Heat transfer tube and cracking furnace using the heat transfer tube: US20140127091[P]. 2014-05-08. |
| [79] | 张利军. 扭曲片管强化传热技术的改进研究[J]. 石油化工设备技术, 2017, 38(4): 21-24, 5-6. |
| ZHANG Lijun. Study on improvement of heat transfer enhancement technology of swirling element of radiant tube[J]. Petro-Chemical Equipment Technology, 2017, 38(4): 21-24, 5-6. |
| [1] | BAI Yiran, ZHAI Yuling, DAI Jinghui, LI Zhouhang. Mechanisms of bubble nucleation and heat transfer enhancement in micro/nano-scale pooling boiling [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 743-751. |
| [2] | ZHU Rukai, CHENG Xiao, LIU Jinya, WU Huiying. Flow and heat transfer characteristics and multi-objective optimization of pin-fin multi inclined jet microchannels [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 86-99. |
| [3] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
| [4] | ZHU Ge, BI Qincheng, TIAN Shujian, YAN Jianguo. Analysis of pressure drop characteristics of the cooling channel with twisted tape insert under high and non-uniform heat fluxes [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5083-5091. |
| [5] | LIU Shijie, MO Xun, TU Aimin, ZHU Dongsheng, TAN Lianyuan. Shell-side heat transfer enhancement of a novel longitudinal flow oil cooler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3475-3482. |
| [6] | XIE Ming, SUN Liqiang, SONG Jianfei, WEI Yaodong. Analysis and characterization of gas swirling flow dynamic characteristics in a cyclone separator [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3455-3464. |
| [7] | LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. |
| [8] | LI Yongtong, LIU Jian, YANG Laishun. Thermo-hydraulic performance analysis of novel metal foam and pin fin hybrid heat sink [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2268-2276. |
| [9] | YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. |
| [10] | LIN Qingyu, WANG Zhu, FENG Zhenfei, LING Biao, CHEN Zhen. Review progress on twisted tape structure for heat transfer and entropy generation in tube [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721. |
| [11] | LIN Weixiang, SU Gangchuan, CHEN Qiang, WEN Jian, AKRAPHON Janon, WANG Simin. Influencing factors of ultrasound enhanced heat transfer of immersed coil heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 40-51. |
| [12] | LIN Wenzhu, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on heat transfer of phase change material heat storage technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. |
| [13] | Xiangli CAI,Zhiyong YANG,Jing WANG,Ling TIAN,Liqiang SUN,Yaodong WEI. Research progress on dynamic characteristics of swirling flow in a cyclone [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4805-4814. |
| [14] | Yizhi YAO,Yuqiang DAI,Bowen ZHANG,Chuang YU,Mohan LI. Performance experiment and analysis of momentum-enhanced ejector [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4489-4496. |
| [15] | Xin GU, Zhiyang ZHENG, Yuankun LUO, Xiaochao XIONG, Dabo ZHANG. Optimization on shell side structure of twisty flow heat exchanger based on orthogonal experiment [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1688-1695. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |