Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S2): 175-184.DOI: 10.16085/j.issn.1000-6613.2020-1111
• Industrial catalysis • Previous Articles Next Articles
Yafei ZHAO1(), Kai YE1, Ye ZHUANG1(
), Jinbao ZHENG2
Received:
2020-06-17
Online:
2020-11-17
Published:
2020-11-20
Contact:
Ye ZHUANG
通讯作者:
庄烨
作者简介:
赵亚飞(1990—),男,硕士,研究方向为工业催化。E-mail:CLC Number:
Yafei ZHAO, Kai YE, Ye ZHUANG, Jinbao ZHENG. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184.
赵亚飞, 叶凯, 庄烨, 郑进保. 锰基催化剂协同等离子降解VOCs研究进展[J]. 化工进展, 2020, 39(S2): 175-184.
1 | 李凌波, 李龙, 程梦婷, 等. 石化企业挥发性有机物无组织排放监测技术进展[J]. 化工进展, 2020, 39(3): 1196-1208. |
LI Lingbo, LI Long, CHENG Mengting, et al. Current status and future developments in monitoring of fugitive VOC emissions from petroleum refining and petrochemical industry[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1196-1208. | |
2 | KIM Hyunha. Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects[J]. Plasma Processes and Polymers, 2004, 1(2): 91-110. |
3 | WANG Baowei, CHI Chunmei, XU Meng, et al. Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge[J]. Chemical Engineering Journal, 2017, 322: 679-692. |
4 | 董冰岩, 施志勇, 何俊文, 等. 脉冲放电等离子体协同Mn/TiO2-分子筛、Fe/TiO2-分子筛、Cu/TiO2-分子筛催化剂降解甲醛[J]. 化工进展, 2015, 34(9): 3337-3344. |
DONG Bingyan, SHI Zhiyong, HE Junwen, et al. Research of pulse discharge plasma combined with Mn/TiO2-molecular、Fe/TiO2-molecular、Cu/TiO2-molecular sieve catalysts decomposition of formaldehyde[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3337-3344. | |
5 | 陈鹏, 陶雷, 谢怡冰, 等. 低温等离子体协同催化降解挥发性有机物的研究进展[J]. 化工进展, 2019, 38(9): 4284-4294. |
CHEN Peng, TAO Lei, XIE Yibing, et al. Non-thermal plasma cooperating catalyst degradation of the volatile organic compounds: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4284-4294. | |
6 | FENG Xinxin, LIU Hongxia, HE Chi, et al. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review[J]. Catalysis Science & Technology, 2018, 8(4): 936-954. |
7 | FENG Fafa, YE Lingling, LIU Ji, et al. Non-thermal plasma generation by using back corona discharge on catalyst[J]. Journal of Electrostatics, 2013, 71(3): 179-184. |
8 | GALLON Helenj, KIM Hyunha, TU Xin, et al. Microscope-ICCD imaging of an atmospheric pressure CH4 and CO2 dielectric barrier discharge[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2176-2177. |
9 | SOMERS W, BOGAERTS A, DUIN A C T VAN, et al. Plasma species interacting with nickel surfaces: toward an atomic scale understanding of plasma-catalysis[J]. The Journal of Physical Chemistry C, 2012, 116(39): 20958-20965. |
10 | ZHANG Xuming, ZHU Jibao, LI Xiaoying, et al. Characteristics of styrene removal with an AC/DC streamer corona plasma system[J]. IEEE Transactions on Plasma Science, 2011, 39(6): 1482-1488. |
11 | ZHANG Shuo, SHEN Xinjun, LIANG Jiyan. Atmospheric pressure oxidation of dilute xylene using plasma-assisted MnOx catalysis system with different precursors[J]. Molecular Catalysis, 2019, 467: 87-94. |
12 | YAO Xiaohong, ZHANG Jian, LIANG Xiaoyang, et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system[J]. Chemosphere, 2019, 230: 479-487. |
13 | LI Yizhuo, FAN Zeyun, SHI Jianwei, et al. Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts[J]. Chemical Engineering Journal, 2014, 241: 251-258. |
14 | FENG Xiaobo, CHEN Changwei, HE Chi, et al. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation[J]. Journal of Hazardous Materials, 2020, 383: 121143-121154. |
15 | SUDHAKARAN M S P, TRINH Hungquang, KARUPPIAH J, et al. Plasma catalytic removal of p-xylene from air stream using gamma-Al2O3 supported manganese catalyst[J]. Topics in Catalysis, 2017, 60(12/13/14): 944-954. |
16 | LIU Yanghaichao, LIAN Liping, ZHAO Weixuan, et al. DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3). DOI: 10.1088/2058-6272/ab69bc. |
17 | GUO Yufang, LIAO Xiaobin, HE Jianhua, et al. Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene[J]. Catalysis Today, 2010, 153(3/4): 176-183. |
18 | WANG Lian, ZHANG Changbin, HE Hong, et al. Effect of doping metals on OMS-2/γ-Al2O3 catalysts for plasma-catalytic removal of o-xylene[J]. The Journal of Physical Chemistry C, 2016, 120(11): 6136-6144. |
19 | YE Lingling, FENG Fada, LIU Ji, et al. Toluene decomposition by a two-stage hybrid plasma catalyst system in dry air[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3529-3538. |
20 | NORSIC Caroline, Jeanmichel TATIBOUE¨T, Catherine BATIOT-DUPEYRAT, et al. Non thermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3[J]. Chemical Engineering Journal, 2016, 304: 563-572. |
21 | YAO Xin, GAO Mengxiang, WEI Zhidong, et al. Removal of hexanal in cooking fume by combination of storage and plasma-catalytic oxidation on alkali-modified Co-Mn solid solution[J]. Chemosphere, 2019, 220: 738-747. |
22 | 鲁美娟, 杨文亭, 喻成龙, 等. 等离子体协同催化降解VOCs过程中O3的作用机理[J]. 化工进展, 2018, 37(7): 2649-2654. |
LU Meijuan, YANG Wenting, YU Chenglong, et al. Role of O3 during the plasma-catalytic oxidation of VOCs[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2649-2654. | |
23 | 孙万启, 宋华, 韩素玲, 等. 废气治理低温等离子体反应器的研究进展[J]. 化工进展, 2011, 30(5): 930-936. |
SUN Wanqi, SONG Hua, HAN Suling, et al. Advances in research on non-thermal plasma reactors of waste gas treatment[J]. Chemiacal Industry and Engineering Progerss, 2011, 30(5): 930-936. | |
24 | ZHU Xinbo, GAO Xiang, YU Xinning, et al. Catalyst screening for acetone removal in a single-stage plasma-catalysis system[J]. Catalysis Today, 2015, 256: 108-114. |
25 | QUOC AN H Than, PHAM HUU T, LE VAN T, et al. Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: toluene removal[J]. Catalysis Today, 2011, 176(1): 474-477. |
26 | DURME J VAN, DEWULF J, DEMEESTERE K, et al. Post-plasma catalytic technology for the removal of toluene from indoor air: effect of humidity[J]. Applied Catalysis B: Environmental, 2009, 87(1/2): 78-83. |
27 | HUANG Yifan, DAI Shaolong, FENG Fada, et al. A comparison study of toluene removal by two-stage DBD-catalyst systems loading with MnOx, CeMnOx, and CoMnOx[J]. Environmental Science and Pollution Research International, 2015, 22(23): 19240-19250. |
28 | KARUPPIAH J, REDDY E Linga, P Manoj Mumar REDDY, et al. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor[J]. Journal of Hazardous Materials, 2012, 237/238: 283-289. |
29 | HAYASHI Kazuo, YASUI Hiroyuki, TANAKA Motofumi, et al. Temperature dependence of toluene decomposition behavior in the discharge-catalyst hybrid reactor[J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1553-1558. |
30 | SUBRAHMANYAM C, MAGUREANU M, RENKEN A, et al. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma[J]. Applied Catalysis B: Environmental, 2006, 65(1/2): 150-156. |
31 | GUO Yufang, LIAO Xiaobin, FU Mingli, et al. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process[J]. Journal of Environmental Sciences (China), 2015, 28: 187-194. |
32 | LU Meijuan, HUANG Rong, WANG Peitao, et al. Plasma-catalytic oxidation of toluene on MnxOy at atmospheric pressure and room temperature[J]. Plasma Chemistry and Plasma Processing, 2014, 34(5): 1141-1156. |
33 | JIANG Nan, QIU Cheng, GUO Lianjie, et al. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor[J]. Journal of Hazardous Materials, 2019, 369: 611-620. |
34 | 郭惠, 党小庆, 秦彩虹, 等. 低温等离子体催化降解甲苯的影响因素分析[J]. 环境污染与防治, 2019, 41(12): 1422-1426. |
GUO Hui, DANG Xiaoqing, QIN Caihong, et al. Ozone formation in toluene degradation by plasma assisted catalysis[J]. Environmental Pollution & Control, 2019, 41(12): 1422-1426. | |
35 | DEVAHASDIN Sid, FAN Chiun, LI Kuyen, et al. TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1/2/3): 161-170. |
36 | ABDELAZIZ Omar Y, MEIER Sebastian, PROTHMANN Jens, et al. Oxidative depolymerisation of lignosulphonate lignin into low-molecular-weight products with Cu-Mn/δ-Al2O3[J]. Topics in Catalysis, 2019, 62(7/8/9/10/11): 639-648. |
37 | ZENG Xiaolan, LI Bo, LIU Runqi, et al. Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system[J]. Chemical Engineering Journal, 2020, 384: 123362. |
38 | WANG Bangfen, XU Xiaoxin, XU Weicheng, et al. The Mechanism of non-thermal plasma catalysis on volatile organic compounds removal[J]. Catalysis Surveys from Asia, 2018, 22(2): 73-94. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[10] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[11] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 952
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 351
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |