| 1 |
YANG Qingchun, ZHU Shun, YANG Qing, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814.
|
| 2 |
YUE Hairong, ZHAO Yujun, MA Xinbin, et al. Ethylene glycol: Properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218-4244.
|
| 3 |
庞明, 史仪凯, 王文东, 等. 考虑成本约束及功率分配策略的混合储能配置方法[J]. 西北工业大学学报, 2018, 36(4): 679-684.
|
|
PANG Ming, SHI Yikai, WANG Wendong, et al. Optimal sizing of hybrid energy storage system taking into account economic factors and power allocation[J]. Journal of Northwestern Polytechnical University, 2018, 36(4): 679-684.
|
| 4 |
丰存礼. 国内乙二醇生产工艺技术情况与市场分析[J]. 化工进展, 2013, 32(5): 1200-1204.
|
|
FENG Cunli. Production technology and market analysis of domestic ethylene glycol[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1200-1204.
|
| 5 |
储根云, 范英杰, 张大伟, 等. 煤制乙二醇关键单元技术与低碳集成工艺的研究进展[J]. 化工进展, 2022, 41(3): 1654-1666.
|
|
CHU Genyun, FAN Yingjie, ZHANG Dawei, et al. Progress in key unit technologies and low-carbon integrated processes of coal to ethylene glycol process[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1654-1666.
|
| 6 |
成卫国, 孙剑, 张军平, 等. 环氧乙烷法合成乙二醇的技术创新[J]. 化工进展, 2014, 33(7): 1740-1747.
|
|
CHENG Weiguo, SUN Jian, ZHANG Junping, et al. Innovation in synthesis of ethylene glycol from ethylene oxide[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1740-1747.
|
| 7 |
周子淇, 马晟焱, 张东培, 等. 生物质基乙醇酸催化合成进展[J]. 石油炼制与化工, 2023, 54(11): 131-137.
|
|
ZHOU Ziqi, MA Shengyan, ZHANG Dongpei, et al. Recent advances in catalytic synthesis of biomass-derived glycolic acid[J]. Petroleum Processing and Petrochemicals, 2023, 54(11): 131-137.
|
| 8 |
郁红. 2022年现代煤化工效益两极分化[EB/OL]. (2023-04-18) [2024-01-20]. .
|
|
YU Hong. Benefits of modern coal chemical industry polarized in 2022[EB/OL]. (2023-04-18) [2024-01-20]. .
|
| 9 |
VAN DE BERG W J, VAN DEN BROEKE M R, REIJMER C H, et al. Characteristics of the Antarctic surface mass balance, 1958—2002, using a regional atmospheric climate model[J]. Annals of Glaciology, 2005, 41(1): 97-104.
|
| 10 |
王瑞. 化学循环法分离乙二醇和1,2-丁二醇新工艺研究[D]. 天津: 天津大学, 2021.
|
|
WANG Rui. Research on the Ethylene glycol and 1,2-butanediol chemical looping separation new process[D]. Tianjin: Tianjin University, 2021.
|
| 11 |
王译伟. 酯交换反应辅助分离煤基乙二醇联产碳酸丁烯酯过程研究[D]. 天津: 天津大学, 2020.
|
|
WANG Yiwei. Process study of transesterification assisted separation of coal-based ethylene glycol with co-production of 1,2-butene carbonate[D]. Tianjin: Tianjin University, 2020.
|
| 12 |
王译伟, 高鑫, 李洪, 等. 化学循环分离煤基乙二醇联产碳酸丁烯酯工艺研究[J]. 现代化工, 2021, 41(9): 206-210.
|
|
WANG Yiwei, GAO Xin, LI Hong, et al. Study on process for separation of coal-based ethylene glycol with co-production of 1, 2-butylene carbonate by chemical-looping technology[J]. Modern Chemical Industry, 2021, 41(9): 206-210, 214.
|
| 13 |
WOOD M A, Willett P, Colley S W, et al. Process for the purification of butane 1,4-DIOL: KR19987007701[P]. 2024-01-21.
|
| 14 |
LI Hong, ZHAO Zhenyu, QIN Jie, et al. Reversible reaction-assisted intensification process for separating the azeotropic mixture of ethanediol and 1,2-butanediol: Vapor-liquid equilibrium and economic evaluation[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 5083-5092.
|
| 15 |
GAO Xin, WANG Yiwei, WANG Rui, et al. Application of dimethyl carbonate assisted chemical looping technology in the separation of the ethylene glycol and 1,2-butanediol mixture and coproduction of 1,2-butene carbonate[J]. Industrial & Engineering Chemistry Research, 2021, 60(5): 2249-2264.
|
| 16 |
仪凡, 贺鹏, 曹俊雅, 等. CaY分子筛对乙二醇和1,2-丁二醇吸附分离性能的研究[J]. 过程工程学报, 2022, 22(4): 448-457.
|
|
YI Fan, HE Peng, CAO Junya, et al. Study on adsorptive separation property of CaY zeolite for ethylene glycol and 1,2-butanediol[J]. The Chinese Journal of Process Engineering, 2022, 22(4): 448-457.
|
| 17 |
ANICETO J P S, AZENHA I S, DOMINGUES F M J, et al. Design and optimization of a simulated moving bed unit for the separation of betulinic, oleanolic and ursolic acids mixtures: Experimental and modeling studies[J]. Separation and Purification Technology, 2018, 192: 401-411.
|
| 18 |
李敏, 危凤. 新型模拟移动床技术进展[J]. 化工进展, 2011, 30(8): 1651-1657.
|
|
LI Min, WEI Feng. Advance in novel simulated moving bed technology[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1651-1657.
|
| 19 |
宋续祺, 金涌, 俞芷青. 移动床技术的现状与发展前景[J]. 化工进展, 1994, 13(3): 40-45.
|
|
SONG Xuqi, JIN Yong, YU Zhiqing. Present status and development of moving bed technique[J]. Chemical Industry and Engineering Progress, 1994, 13(3): 40-45.
|
| 20 |
LIANG Ming Tsai, LIN Chih-Hsiung, TSAI Pei-Ying, et al. The separation of butanediol and propanediol by simulated moving bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61: 12-19.
|
| 21 |
WU Chengkun, XU Yuanzhi, BAI Zhiyuan, et al. High-purity tri-alpha-linolenin isolation from silkworm pupae oil using sequential simulated moving bed chromatography[J]. Biomass Conversion and Biorefinery, 2023, 13(18): 16453-16466.
|
| 22 |
于伟, 李良玉, 李朝阳, 等. 顺序式模拟移动色谱分离木糖醇母液的前处理工艺研究[J]. 中国食品添加剂, 2015, 26(10): 70-76.
|
|
YU Wei, LI Liangyu, LI Chaoyang, et al. Study on the pretreatment of xylitol mother liquor separated by sequential simulated moving bed chromatography[J]. China Food Additives, 2015, 26(10): 70-76.
|
| 23 |
李良玉, 孙蕊, 李朝阳, 等. 顺序式模拟移动色谱纯化木糖醇母液[J]. 天然产物研究与开发, 2015, 27(10): 1789-1793.
|
|
LI Liangyu, SUN Rui, LI Chaoyang, et al. Purification of xylitol mother liquid using sequential simulated moving bed chromatography[J]. Natural Product Research and Development, 2015, 27(10): 1789-1793.
|
| 24 |
李洪飞, 孙大庆, 李良玉, 等. 基于顺序式模拟移动床色谱法的两种木糖母液分离工艺比较[J]. 食品与机械, 2019, 35(10): 210-213.
|
|
LI Hongfei, SUN Daqing, LI Liangyu, et al. Comparing of two seperation processes for recovering xylose mother liquor with sequential simulated moving bed technology[J]. Food & Machinery, 2019, 35(10): 210-213.
|
| 25 |
LI Yan, YU Weifang, DING Ziyuan, et al. Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process[J]. Separation and Purification Technology, 2019, 215: 360–367.
|
| 26 |
李艳, 凌山, 刘聚明, 等. 顺序式模拟移动床分离低聚木糖多目标优化及其变量调控机制[J]. 现代化工, 2023, 43(1): 240-245.
|
|
LI Yan, LING Shan, LIU Juming, et al. Multi-objective optimization of sequentially-simulated moving bed for separation of xylo-oligosaccharides and its variables regulation mechanism[J]. Modern Chemical Industry, 2023, 43(1): 240-245.
|
| 27 |
陈永涛. 顺序式模拟移动床分离果葡糖浆的过程研究[D]. 温州: 温州大学, 2017.
|
|
CHEN Yongtao. Study of the seperation process of fructose syrup by sequential simulated moving bed[D]. Wenzhou: Wenzhou University, 2017.
|
| 28 |
LI Yan, DING Ziyuan, WANG Jian, et al. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization[J]. Chemical Engineering Science, 2020, 219: 115562.
|
| 29 |
LEE Ju Weon, Kyung Ho ROW. Prediction of the gradient retention times of purine compounds in reversed phase high performance liquid chromatography[J]. Journal of Liquid Chromatography & Related Technologies, 2008, 31(16): 2401-2416.
|
| 30 |
Raimund BÜRGER, MULET Pep, RUBIO Lihki, et al. Linearly implicit-explicit schemes for the equilibrium dispersive model of chromatography[J]. Applied Mathematics and Computation, 2018, 317: 172-186.
|
| 31 |
VAJDA Péter, BOCIAN Szymon, BUSZEWSKI Bogusław, et al. Examination of the surface heterogeneity of reversed-phase packing materials with solvent adsorption[J]. Journal of Separation Science, 2010, 33(23/24): 3644-3654.
|
| 32 |
魏朋, 陈珺, 王志国, 等. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
|
|
WEI Peng, CHEN Jun, WANG Zhiguo, et al. Improved productivity strategy of simulated moving bed based on binary-partial-discard[J]. CIESC Journal, 2022, 73(7): 3099-3108.
|
| 33 |
DUAN G, CHING C B, SWARUP S. Kinetic and equilibrium study of the separation of propranolol enantiomers by high performance liquid chromatography on a chiral adsorbent[J]. Chemical Engineering Journal, 1998, 69(2): 111-117.
|
| 34 |
POOLE Colin F. Fundamentals of preparative and nonlinear chromatography[J]. Analytica Chimica Acta, 1995, 302(1): 127-128.
|
| 35 |
MUKHOPADHYAY Sumit, TSANG Yvonne W, FINSTERLE Stefan. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling[J]. Water Resources Research, 2009, 45(4): W04414.
|
| 36 |
QAMAR Shamsul, ABBASI Javeria Nawaz, MEHWISH Aqsa, et al. Linear general rate model of chromatography for core-shell particles: Analytical solutions and moment analysis[J]. Chemical Engineering Science, 2015, 137: 352-363.
|
| 37 |
栗祥祥. 乙二醇和1,2-丁二醇色谱分离的应用基础研究[D]. 北京: 北京化工大学, 2022.
|
|
LI Xiangxiang. Applied basic research on chromatographic separation of ethylene glycol and 1,2-butanediol[D]. Beijing: Beijing University of Chemical Technology, 2022.
|
| 38 |
LEE Chung-Gi, Cheol Yeon JO, LEE Ki Bong, et al. Improving the performances of a simulated-moving-bed process for separation of acetoin and 2,3-butanediol by the use of an adsorbent for minimizing the extent of 2,3-butanediol isomerism[J]. Separation and Purification Technology, 2020, 248: 116922.
|
| 39 |
KACZMARSKI Krzysztof, ANTOS Dorota, SAJONZ Hong, et al. Comparative modeling of breakthrough curves of bovine serum albumin in anion-exchange chromatography[J]. Journal of Chromatography A, 2001, 925(1/2): 1-17.
|
| 40 |
KIM Young Sik, LEE Chong Ho, WANKAT Phillip C, et al. Comparing the performance of one-column process and four-zone simulated moving bed by computer simulation[J]. Biotechnology and Bioprocess Engineering, 2004, 9(5): 362-368.
|
| 41 |
MAO Shimin, ZHANG Yan, ROHANI Sohrab, et al. Enantioseparation of racemic mandelic acid by simulated moving bed chromatography using Chiralcel-OD column[J]. The Canadian Journal of Chemical Engineering, 2014, 92(7): 1283-1292.
|
| 42 |
MIGLIORINI Cristiano, MAZZOTTI Marco, MORBIDELLI Massimo. Continuous chromatographic separation through simulated moving beds under linear and nonlinear conditions[J]. Journal of Chromatography A, 1998, 827(2): 161-173.
|
| 43 |
TANGPROMPHAN Preuk, BUDMAN Hector, JAREE Attasak. A simplified strategy to reduce the desorbent consumption and equipment installed in a three-zone simulated moving bed process for the separation of glucose and fructose[J]. Chemical Engineering and Processing- Process Intensification, 2018, 126: 23-37.
|
| 44 |
GENTILINI Andrea, MIGLIORINI Cristiano, MAZZOTTI Marco, et al. Optimal operation of simulated moving-bed units for non-linear chromatographic separations[J]. Journal of Chromatography A, 1998, 805(1/2): 37-44.
|
| 45 |
王德华, 王辉国. 模拟移动床技术进展[J]. 化工进展, 2004, 23(6): 609-614, 640.
|
|
WANG Dehua, WANG Huiguo. Progress of simulated moving-bed technology[J]. Chemical Industry and Engineering Progress, 2004, 23(6): 609-614, 640.
|
| 46 |
FELINGER Attila, ZHOU Dongmei, GUIOCHON Georges. Determination of the single component and competitive adsorption isotherms of the 1-indanol enantiomers by the inverse method[J]. Journal of Chromatography A, 2003, 1005(1/2): 35-49.
|
| 47 |
CHUNG S F, WEN C Y. Longitudinal dispersion of liquid flowing through fixed and fluidized beds[J]. AIChE Journal, 1968, 14(6): 857-866.
|
| 48 |
WILSON E J, GEANKOPLIS C J. Liquid mass transfer at very low Reynolds numbers in packed beds[J]. Industrial & Engineering Chemistry Fundamentals, 1966, 5(1): 9-14.
|
| 49 |
MACKIE J S, MEARES P. The diffusion of electrolytes in a cation-exchange resin membrane Ⅰ. Theoretical[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 232(1191): 498-509.
|
| 50 |
WILKE C R, CHANG Pin. Correlation of diffusion coefficients in dilute solutions[J]. AIChE Journal, 1955, 1(2): 264-270.
|