Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 354-366.DOI: 10.16085/j.issn.1000-6613.2024-0095
• Materials science and technology • Previous Articles Next Articles
JIAO Rui(), ZHOU Tao(
), SUN Hanxue, LI Jiyan, ZHU Zhaoqi, LI An(
)
Received:
2024-01-14
Revised:
2024-04-16
Online:
2025-02-13
Published:
2025-01-15
Contact:
LI An
焦芮(), 周涛(
), 孙寒雪, 李吉焱, 朱照琪, 李安(
)
通讯作者:
李安
作者简介:
焦芮(1993—),女,讲师,博士,研究方向为微纳孔材料的制备及其在放射性元素吸附领域应用。E-mail:jiaorui@lut.edu.cn。基金资助:
CLC Number:
JIAO Rui, ZHOU Tao, SUN Hanxue, LI Jiyan, ZHU Zhaoqi, LI An. Progress in the study of porous materials for radionuclide adsorption in wastewater[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 354-366.
焦芮, 周涛, 孙寒雪, 李吉焱, 朱照琪, 李安. 多孔材料用于废水中放射性核素吸附的研究进展[J]. 化工进展, 2025, 44(1): 354-366.
处理技术 | 特点 | 局限性 | 参考文献 |
---|---|---|---|
化学沉淀 | 工艺简单、成本低、适用范围广 | 固液分离困难、污泥量大、会造成二次污染 | [ |
离子交换 | 具有良好的化学稳定性、热稳定性和辐射稳定性 | 无法用于处理高浓度放射性废水;难以循环利用 | [ |
膜分离技术 | 净化系数高、浓缩量大、能耗低、系统简单、操作灵活 | 材料的成膜性较难;膜寿命较短 | [ |
蒸发浓缩 | 净化系数和体积减量效果高、灵活性大、应用范围广、能够与各种技术相结合 | 热利用率低,价格昂贵;不适用于处理含有挥发性核素的废液;处理酸性高放废液时,随着酸浓度的增加,沸点升高,效率降低,设备腐蚀性增加 | [ |
物理吸附 | 吸附材料种类多,可根据不同放射性核素的性质选择与之相对应的吸附剂 | 材料再生性能差、成本高 | [ |
处理技术 | 特点 | 局限性 | 参考文献 |
---|---|---|---|
化学沉淀 | 工艺简单、成本低、适用范围广 | 固液分离困难、污泥量大、会造成二次污染 | [ |
离子交换 | 具有良好的化学稳定性、热稳定性和辐射稳定性 | 无法用于处理高浓度放射性废水;难以循环利用 | [ |
膜分离技术 | 净化系数高、浓缩量大、能耗低、系统简单、操作灵活 | 材料的成膜性较难;膜寿命较短 | [ |
蒸发浓缩 | 净化系数和体积减量效果高、灵活性大、应用范围广、能够与各种技术相结合 | 热利用率低,价格昂贵;不适用于处理含有挥发性核素的废液;处理酸性高放废液时,随着酸浓度的增加,沸点升高,效率降低,设备腐蚀性增加 | [ |
物理吸附 | 吸附材料种类多,可根据不同放射性核素的性质选择与之相对应的吸附剂 | 材料再生性能差、成本高 | [ |
1 | ALAGUMALAI K, HA J H, CHOI S S. Recent advances in the removal of radioactive wastes containing 58Co and 90Sr from aqueous solutions using adsorption technology[J]. Industrial Chemistry, 2022, 33(4): 352-366. |
2 | OSMANLIOGLU Ahmet E. Decontamination of radioactive wastewater by two-staged chemical precipitation[J]. Nuclear Engineering and Technology, 2018, 50(6): 886-889. |
3 | MA Hailing, SHEN Minghai, TONG Yao, et al. Radioactive wastewater treatment technologies: A review[J]. Molecules, 2023, 28(4): 1935-1959. |
4 | SYLVESTER Paul, MILNER Tim, JENSEN Jesse. Radioactive liquid waste treatment at Fukushima Daiichi[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(9): 1592-1596. |
5 | LUO Xin, ZHANG Guanghui, WANG Xue, et al. Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(2): 931-939. |
6 | LI Shicheng, HE Zhengzhong, XIAO Detao, et al. Study on the treatment of radioactive wastewater by non-contact membrane distillation[J]. Separation and Purification Technology, 2022, 290: 120766. |
7 | FIGUEIREDO Bruno R, CARDOSO Simão P, PORTUGAL Inês, et al. Inorganic ion exchangers for cesium removal from radioactive wastewater[J]. Separation & Purification Reviews, 2018, 47(4): 306-336. |
8 | WANG Chao, WANG Yian, QIN Hui, et al. Application of microfiltration membrane technology in water treatment[J]. IOP Conference Series: Earth and Environmental Science, 2020, 571(1): 012158. |
9 | Grażyna ZAKRZEWSKA-TRZNADEL. Advances in membrane technologies for the treatment of liquid radioactive waste[J]. Desalination, 2013, 321: 119-130. |
10 | SI Zetian, HAN Dong, XIANG Jiawei. Experimental investigation on the mechanical vapor recompression evaporation system coupled with multiple vacuum membrane distillation modules to treat industrial wastewater[J]. Separation and Purification Technology, 2021, 275: 119178. |
11 | Hee-Chul EUN, CHANG Na-On, LEE Song-bok, et al. A study on treatment of strong acidic wastewater containing a high concentration of a nonionic surfactant and ionic materials with radioactive nuclides[J]. Water, Air, & Soil Pollution, 2022, 233(9): 360-368. |
12 | GROMOV V F, IKIM M I, GERASIMOV G N, et al. Crown ethers: Selective sorbents of radioactive and heavy metals[J]. Russian Journal of Physical Chemistry B, 2021, 15(1): 140-152. |
13 | XUAN Sensen, ZHANG Bo, XIAO Lin, et al. Facile carboxylation of natural eggshell membrane for highly selective U(Ⅵ) adsorption from radioactive wastewater[J]. Environmental Science and Pollution Research, 2021, 28(33): 45134-45143. |
14 | HUANG Lei, LUO Zhixuan, HUANG Xuexia, et al. Applications of biomass-based materials to remove fluoride from wastewater: A review[J]. Chemosphere, 2022, 301: 134679. |
15 | FANG Xianghong, XU Zhonghui, LUO Yaodong, et al. Removal of radionuclides from laundry wastewater containing organics and suspended solids using inorganic ion exchanger[J]. Procedia Environmental Sciences, 2016, 31: 375-381. |
16 | LIU Weifeng, ZHANG Jian, CHENG Cheng, et al. Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(Ⅱ) from aqueous solutions[J]. Chemical Engineering Journal, 2011, 175: 24-32. |
17 | MEKAWY Zakaria A, SHAZLY Ehab A A EL, MAHMOUD Mamdoh R. Utilization of bentonite as a low-cost adsorbent for removal of 95Zr(Ⅳ), 181Hf(Ⅳ) and 95Nb(Ⅴ) radionuclides from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(9): 3935-3948. |
18 | LI Yang, GUO Xinghua, LI Xiaofeng, et al. Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long-lived radionuclides[J]. Angewandte Chemie International Edition, 2020, 59(10): 4168-4175. |
19 | GENDY Eman Abdelnasser, OYEKUNLE Daniel Temitayo, Jawad ALI, et al. High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review[J]. Journal of Environmental Radioactivity, 2021, 238: 106710. |
20 | LI Baoning, ZHANG Xinglong, BAI Xiaohui, et al. Electron-rich triazine-conjugated microporous polymers for the removal of dyes from wastewater[J]. Molecules, 2023, 28(12): 4785. |
21 | FU Xiaohua, SONG Xinyu, ZHENG Qingxing, et al. Frontier materials for adsorption of antimony and arsenic in aqueous environments: A review[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10824. |
22 | PARLAPIANO Marco, Çağrı AKYOL, FOGLIA Alessia, et al. Selective removal of contaminants of emerging concern (CECs) from urban water cycle via molecularly imprinted polymers (MIPs): Potential of upscaling and enabling reclaimed water reuse[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 105051. |
23 | DELKASH Madjid, BAKHSHAYESH Babak Ebeazi, KAZEMIAN Hossein. Using zeolitic adsorbents to cleanup special wastewater streams: A review[J]. Microporous and Mesoporous Materials, 2015, 214: 224-241. |
24 | 徐杨, 王鹏, 赵敏, 等. 用于放射性核素吸附分离的有机多孔材料研究进展[J]. 原子能科学技术, 2019, 53(10): 1773-1787. |
XU Yang, WANG Peng, ZHAO Min, et al. Advance in porous organic adsorbent for radionuclide adsorption and separation[J]. Atomic Energy Science and Technology, 2019, 53(10): 1773-1787. | |
25 | HAN Jin, QIU Taolei, WU Dan, et al. Upcycling of polyphenylene ether waste products to hypercrosslinked organic porous materials[J]. Materials Today Communications, 2023, 34: 105489. |
26 | ZHANG Ning, ISHAG Alhadi, LI Ying, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review[J]. Journal of Cleaner Production, 2020, 277: 123360. |
27 | Alberto LÓPEZ-MAGANO, Alicia JIMÉNEZ-ALMARZA, Jose ALEMÁN, et al. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) applied to photocatalytic organic transformations[J]. Catalysts, 2020, 10(7): 720. |
28 | ZHANG Ya, HUANG Zhe, RUAN Bo, et al. Design and synthesis of polyimide covalent organic frameworks[J]. Macromolecular Rapid Communications, 2020, 41(22): 2000402. |
29 | DIVYA, JANGIR Ritambhara. COF-molecular sieving membrane fabrication and applications for dye separation[J]. Chemistry Select, 2023, 8(43): e202302060. |
30 | XIONG Shanxin, CUI Xin, GUO Jingru, et al. Triphenylamine-based covalent organic framework nanospheres: Solvothermal synthesis and electrochromic properties[J]. Journal of Electroanalytical Chemistry, 2023, 942: 117563. |
31 | JI Wenhua, GUO Yushuang, XIE Huimin, et al. Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water[J]. Journal of Hazardous Materials, 2020, 397: 122793. |
32 | DEMAZEAU Gérard, GOGLIO Graziella, LARGETEAU Alain. Solvothermal processes and the synthesis of nitrides[J]. High Pressure Research, 2008, 28(4): 497-502. |
33 | CHEN Yan, LI Wei, WANG Xiaohan, et al. Green synthesis of covalent organic frameworks based on reaction media[J]. Materials Chemistry Frontiers, 2021, 5(3): 1253-1267. |
34 | HUANG Wei, JIANG Yi, LI Xiang, et al. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures[J]. ACS Applied Materials & Interfaces, 2013, 5(18): 8845-8849. |
35 | HU Jiyun, HUANG Zhiyuan, LIU Yi. Beyond solvothermal: Alternative synthetic methods for covalent organic frameworks[J]. Angewandte Chemie International Edition, 2023, 62(37): e202306999. |
36 | CAMPBELL Neil L, CLOWES Rob, RITCHIE Lyndsey K, et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chemistry of Materials, 2009, 21(2): 204-206. |
37 | SUN Qi, AGUILA Briana, MA Shengqian. Opportunities of porous organic polymers for radionuclide sequestration[J]. Trends in Chemistry, 2019, 1(3): 292-303. |
38 | 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495. |
ZHANG Huidi, LI Zijie, SHI Weiqun. The stability enhancement of covalent organic frameworks and their applications in radionuclide separation[J]. Progress in Chemistry, 2023, 35(3): 475-495. | |
39 | ZHONG Xin, LU Zhipeng, LIANG Wen, et al. The fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultra-fast removal of UO2 2+ ions from aqueous solution[J]. Environmental Science: Nano, 2020, 7(11): 3303-3317. |
40 | ZHANG Chengrong, CUI Weirong, NIU Chengpeng, et al. rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination[J]. Chemical Engineering Journal, 2022, 428: 131178. |
41 | SUN Qi, AGUILA Briana, EARL Lyndsey D, et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration[J]. Advanced Materials, 2018, 30(20): 1705479. |
42 | WANG Hai, LIU Renrong, WANG Huifang, et al. High effective enrichment of U(Ⅵ) from aqueous solutions on versatile crystalline carbohydrate polymer-functionalized graphene oxide[J]. Dalton Transactions, 2021, 50(39): 14009-14017. |
43 | CUI Weirong, ZHANG Chengrong, JIANG Wei, et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium[J]. Nature Communications, 2020, 11(1): 436-446. |
44 | RUIDAS Santu, CHOWDHURY Avik, GHOSH Anirban, et al. Covalent organic framework as a metal-free photocatalyst for dye degradation and radioactive iodine adsorption[J]. Langmuir, 2023, 39(11): 4071-4081. |
45 | YANG Yuling, XIONG Xiaohong, FAN Yaling, et al. Insight into volatile iodine uptake properties of covalent organic frameworks with different conjugated structures[J]. Journal of Solid-State Chemistry, 2019, 279: 120979-120986. |
46 | HE Linwei, LIU Shengtang, CHEN Long, et al. Mechanism unravelling for ultrafast and selective 99TcO4 - uptake by a radiation-resistant cationic covalent organic framework: A combined radiological experiment and molecular dynamics simulation study[J]. Chemical Science, 2019, 10(15): 4293-4305. |
47 | Hongju DA, YANG Chengxiong, YAN Xiuping. Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: An analogue of radioactive pertechnetate from aqueous solution[J]. Environmental Science & Technology, 2019, 53(9): 5212-5220. |
48 | CHEN Lang, HANG Jiahui, CHEN Bo, et al. Photocatalytic uranium removal from basic effluent by porphyrin-Ni COF as the photocatalyst[J]. Chemical Engineering Journal, 2023, 454: 140378. |
49 | HAO Mengjie, XIE Yinghui, LIU Xiaolu, et al. Modulating uranium extraction performance of multivariate covalent organic frameworks through donor-acceptor linkers and amidoxime nanotraps[J]. JACS Au, 2023, 3(1): 239-251. |
50 | AHMADIJOKANI Farhad, GHAFFARKHAH Ahmadreza, MOLAVI Hossein, et al. COF and MOF hybrids: Advanced materials for wastewater treatment[J]. Advanced Functional Materials, 2024, 34(43)2305527. |
51 | YAGHI O M, LI Guangming, LI Hailian. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
52 | Marta MON, BRUNO Rosaria, Jesus FERRANDO-SORIA, et al. Metal-organic framework technologies for water remediation: Towards a sustainable ecosystem[J]. Journal of Materials Chemistry A, 2018, 6(12): 4912-4947. |
53 | DU Yingjie, JIA Xiaotong, ZHONG Le, et al. Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites[J]. Coordination Chemistry Reviews, 2022, 454: 214327. |
54 | Pilar AMO-OCHOA, GIVAJA Gonzalo, MIGUEL Pablo J Sanz, et al. Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF[J]. Inorganic Chemistry Communications, 2007, 10(8): 921-924. |
55 | SONG Gongjing, SHI Yuxin, JIANG Shu, et al. Recent progress in MOF-derived porous materials as electrodes for high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(42): 2303121. |
56 | ZHUANG Jinliang, TERFORT Andreas, Christof WÖLL. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: A review[J]. Coordination Chemistry Reviews, 2016, 307: 391-424. |
57 | TAO Chengan, WANG Jianfang. Synthesis of metal organic frameworks by ball-milling[J]. Crystals, 2020, 11(1): 15-35. |
58 | Barbara SZCZĘŚNIAK, BORYSIUK Sylwia, CHOMA Jerzy, et al. Mechanochemical synthesis of highly porous materials[J]. Materials Horizons, 2020, 7(6): 1457-1473. |
59 | LI Jie, ZHANG Yan, ZHOU Yi, et al. Tailored metal-organic frameworks facilitate the simultaneously high-efficient sorption of UO2 2+ and ReO4 - in water[J]. Science of the Total Environment, 2021, 799: 149468-149479. |
60 | BAI Zhiqiang, YUAN Liyong, ZHU Lin, et al. Introduction of amino groups into acid-resistant MOFs for enhanced U(Ⅵ) sorption[J]. Journal of Materials Chemistry A, 2015, 3(2): 525-534. |
61 | LIU Tao, ZHANG Xiaobin, WANG Hui, et al. Photothermal enhancement of uranium capture from seawater by monolithic MOF-bonded carbon sponge[J]. Chemical Engineering Journal, 2021, 412: 128700. |
62 | Mahmoud EL-SHAHAT, ABDELHAMID Ahmed E, ABDELHAMEED Reda M. Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan[J]. Carbohydrate Polymers, 2020, 231: 115742. |
63 | TANG Yuanzhe, HUANG Hongliang, LI Jian, et al. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture[J]. Journal of Materials Chemistry A, 2019, 7(31): 18324-18329. |
64 | WANG Yanlong, LIU Zhiyong, LI Yuxiang, et al. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions[J]. Journal of the American Chemical Society, 2015, 137(19): 6144-6147. |
65 | SHEHA Reda R, SHETA Sheta M, HAMOUDA Mohamed A, et al. A comprehensive study for the potential removal of 152+154Eu radionuclides using a promising modified strontium-based MOF[J]. Journal of Environmental Radioactivity, 2023, 270: 107287. |
66 | YEKTA Sina, SADEGHI Meysam. Investigation of the Sr2+ ions removal from contaminated drinking water using novel CaO NPs@MOF-5 composite adsorbent[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(3): 1049-1064. |
67 | ZHAO Jing, Chaoyi LYU, ZHANG Rui, et al. Self-cleaning and regenerable nano zero-valent iron modified PCN-224 heterojunction for photo-enhanced radioactive waste reduction[J]. Journal of Hazardous Materials, 2023, 442: 130018. |
68 | LIU Tao, TANG Shuai, WEI Tao, et al. Defect-engineered metal-organic framework with enhanced photoreduction activity toward uranium extraction from seawater[J]. Cell Reports Physical Science, 2022, 3: 100892. |
69 | QIU Feng, ZHAO Wuxue, HAN Sheng, et al. Recent advances in boron-containing conjugated porous polymers[J]. Polymers, 2016, 8(5): 191. |
70 | WANG Wenting, JIANG Lingchang, LI Lifen, et al. Construction of silver functionalized porous aromatic framework for selective separation of ethylene over ethane[J]. Chemical Physics Letters, 2022, 786: 139198. |
71 | ZHU Yunlong, JI Yajian, WANG Degao, et al. BODIPY-based conjugated porous polymers for highly efficient volatile iodine capture[J]. Journal of Materials Chemistry A, 2017, 5(14): 6622-6629. |
72 | LI Baiyan, SUN Qi, ZHANG Yiming, et al. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12511-12517. |
[1] | CHEN Qi, WANG Wentao, ZHANG Zhipeng, YAN Taihong. Progress of covalent framework for radionuclides absorption [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 241-255. |
[2] | Zhenguo ZHANG, Mingdong ZHANG, Ping GU, Guanghui ZHANG. Progress in adsorption of radioactive strontium and cesium from aqueous solution on zeolite materials [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1984-1995. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |