Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 7025-7032.DOI: 10.16085/j.issn.1000-6613.2023-1984
• Resources and environmental engineering • Previous Articles
LI Wentao1,3(), FU Guozhi2, HUANG Ting1, WU Ruihan1, LI Kai1(
), MA Zonghu2, WU Yangwen1, LU Qiang1, JIA Bao3
Received:
2023-11-14
Revised:
2024-04-01
Online:
2025-01-11
Published:
2024-12-15
Contact:
LI Kai
李文涛1,3(), 傅国志2, 黄婷1, 吴瑞涵1, 李凯1(
), 马宗虎2, 吴洋文1, 陆强1, 贾宝3
通讯作者:
李凯
作者简介:
李文涛(1990—),男,博士研究生,研究方向为生物质热解多联产。E-mail:liwent@nwh.cn。
基金资助:
CLC Number:
LI Wentao, FU Guozhi, HUANG Ting, WU Ruihan, LI Kai, MA Zonghu, WU Yangwen, LU Qiang, JIA Bao. Preparation of pyrolytic carbon-based denitrification catalyst modified by Mn and its low-temperature denitrification performance[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7025-7032.
李文涛, 傅国志, 黄婷, 吴瑞涵, 李凯, 马宗虎, 吴洋文, 陆强, 贾宝. 热解炭基载锰脱硝催化剂的制备及其低温脱硝性能[J]. 化工进展, 2024, 43(12): 7025-7032.
样品 | SBET/m2·g-1 | Vmic/cm3·g-1 | Vtot/cm3·g-1 | (Vmic/Vtot)/% | Dp/nm |
---|---|---|---|---|---|
AC800-MnO x | 808.14 | 0.31 | 0.40 | 77.5 | 1.97 |
AB700-MnO x | 340.60 | 0.14 | 0.18 | 77.8 | 2.09 |
AB800-MnO x | 1379.88 | 0.43 | 0.80 | 53.7 | 2.29 |
AB900-MnO x | 980.89 | 0.30 | 0.53 | 56.6 | 2.17 |
样品 | SBET/m2·g-1 | Vmic/cm3·g-1 | Vtot/cm3·g-1 | (Vmic/Vtot)/% | Dp/nm |
---|---|---|---|---|---|
AC800-MnO x | 808.14 | 0.31 | 0.40 | 77.5 | 1.97 |
AB700-MnO x | 340.60 | 0.14 | 0.18 | 77.8 | 2.09 |
AB800-MnO x | 1379.88 | 0.43 | 0.80 | 53.7 | 2.29 |
AB900-MnO x | 980.89 | 0.30 | 0.53 | 56.6 | 2.17 |
1 | LIU Yu, ZHAO Jun, LEE Jong-Min. Conventional and new materials for selective catalytic reduction (SCR) of NO x [J]. ChemCatChem, 2018, 10(7): 1499-1511. |
2 | CHEN Mengyin, ZHAO Mengmeng, TANG Fushun, et al. Effect of Ce doping into V2O5-WO3/TiO2 catalysts on the selective catalytic reduction of NO x by NH3 [J]. Journal of Rare Earths, 2017, 35(12): 1206-1215. |
3 | 张铁军, 李坚, 何洪, 等. 锑掺杂对钒钛系催化剂低温脱硝活性的影响[J]. 燃料化学学报, 2017, 45(6): 740-746. |
ZHANG Tiejun, LI Jian, HE Hong, et al. Effect of antimony doped vanadium-titanium catalyst on low-temperature NH3-SCR activity[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 740-746. | |
4 | 邓丽萍, 时好雨, 刘霄龙, 等. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
DENG Liping, SHI Haoyu, LIU Xiaolong, et al. Synergistic control of VOCs by non-noble metal modified vanadium-titanium catalyst NH3-SCR denitrification[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. | |
5 | 蔺卓玮, 陆强, 唐昊, 等. 平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究[J]. 燃料化学学报, 2017, 45(1): 113-122. |
LIN Zhuowei, LU Qiang, TANG Hao, et al. Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 113-122. | |
6 | CAO Wan, ZHANG Weijun. Low temperature selective catalytic reduction of nitric oxide with an activated carbon-supported zero-valent iron catalyst[J]. RSC Advances, 2020, 10(69): 42613-42618. |
7 | WANG Pengchen, YAO Lu, PU Yijuan, et al. Low-temperature selective catalytic reduction of NO x with NH3 over an activated carbon-carbon nanotube composite material prepared by in situ method[J]. RSC Advances, 2019, 9(63): 36658-36663. |
8 | WANG Yanli, GE Chuanzhang, ZHAN Liang, et al. MnO x -CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures[J]. Industrial & Engineering Chemistry Research, 2012, 51(36): 11667-11673. |
9 | 潘磊, 卢平, 宋涛, 等. Mn/Fe负载活性炭低温脱硝协同脱汞实验研究[J]. 燃料化学学报(中英文), 2023, 51(2): 225-235. |
PAN Lei, LU Ping, SONG Tao, et al. Experimental study on low temperature NO reduction and Hg0 removal of activated carbon loaded by Mn/Fe oxides[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 225-235. | |
10 | 廖伟平, 杨柳, 王飞, 等. 不同制备方法的Mn-Ce催化剂低温SCR性能研究[J]. 化学学报, 2011, 69(22): 2723-2728. |
LIAO Weiping, YANG Liu, WANG Fei, et al. Performance study for low-temperature SCR catalysts based on Mn-Ce prepared by different methods[J]. Acta Chimica Sinica, 2011, 69(22): 2723-2728. | |
11 | SUN Peng, HUANG Shuxian, GUO Ruitang, et al. The enhanced SCR performance and SO2 resistance of Mn/TiO2 catalyst by the modification with Nb: A mechanistic study[J]. Applied Surface Science, 2018, 447: 479-488. |
12 | LI Wei, GUO Ruitang, WANG Shuxian, et al. The enhanced Zn resistance of Mn/TiO2 catalyst for NH3-SCR reaction by the modification with Nb[J]. Fuel Processing Technology, 2016, 154: 235-242. |
13 | WANG Jinping, YAN Zheng, LIU Lili, et al. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Applied Surface Science, 2014, 313: 660-669. |
14 | 王露珠, 安家康, 张涛, 等. 氮掺杂钒钛蜂窝式催化剂低温脱硝性能[J]. 化工进展, 2023, 42(11): 5747-5755. |
WANG Luzhu, AN Jiakang, ZHANG Tao, et al. Catalytic performance of N-doped vanadium-titanium honeycomb catalysts at low temperature[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5747-5755. | |
15 | LIU Lu, WANG Bangda, YAO Xiaojiang, et al. Highly efficient MnO x /biochar catalysts obtained by air oxidation for low-temperature NH3-SCR of NO[J]. Fuel, 2021, 283: 119336. |
16 | LIU Chang, SHI Jianwen, GAO Chen, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NO x with NH3: A review[J]. Applied Catalysis A: General, 2016, 522: 54-69. |
17 | 郝泽榕, 封硕, 邢玉烨, 等. Fe改性Mn/CeO2催化剂低温下同时脱硝与脱甲苯实验研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1866-1878. |
HAO Zerong, FENG Shuo, XING Yuye, et al. Experimental study of Fe modified Mn/CeO2 catalyst for simultaneous removal of NO and toluene at low temperature[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1866-1878. | |
18 | LI Huirong, SCHILL Leonhard, GAO Qi, et al. The effect of dopants (Fe, Al) on the low-temperature activity and SO2 tolerance in solvothermally synthesized MnO x NH3-SCR catalysts[J]. Fuel, 2024, 358: 130111. |
19 | BONINGARI Thirupathi, PAPPAS Dimitrios K, SMIRNIOTIS Panagiotis G. Metal oxide-confined interweaved titania nanotubes M/TNT (M=Mn, Cu, Ce, Fe, V, Cr, and Co) for the selective catalytic reduction of NO x in the presence of excess oxygen[J]. Journal of Catalysis, 2018, 365: 320-333. |
20 | 冯时宇, 李洋, 李凯, 等. 塑料废弃物热催化制备碳纳米管的研究进展[J]. 环境工程, 2021, 39(4): 107-114. |
FENG Shiyu, LI Yang, LI Kai, et al. Progress in preparation of carbon nanotubes by thermal catalysis of waste plastics[J]. Environmental Engineering, 2021, 39(4): 107-114. | |
21 | 顾甜, 高凤雨, 唐晓龙, 等. 炭基材料负载型低温NH3-SCR脱硝催化剂的研究进展[J]. 化工进展, 2019, 38(5): 2329-2338. |
GU Tian, GAO Fengyu, TANG Xiaolong, et al. Research progress on carbon-based material supported catalysts for the selective catalytic reduction of NO x by NH3 at low temperature[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2329-2338. | |
22 | 郭倩倩, 景文, 侯亚芹, 等. HNO3改性促进活性炭低温脱硝机理的研究[J]. 燃料化学学报, 2021, 49(3): 387-394. |
GUO Qianqian, JING Wen, HOU Yaqin, et al. Effects of HNO3 modification on the mechanism of low temperature NO reduction over activated carbon[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 387-394. | |
23 | 王乐, 周娴娴, 陈良, 等. 核桃壳衍生活性炭孔结构的调控及其对锂硫电池性能的影响[J]. 太原理工大学学报, 2021, 52(6): 863-872. |
WANG Le, ZHOU Xianxian, CHEN Liang, et al. Walnut shell-based activated carbon for Li-S batteries and the effect of pore structure on the performance[J]. Journal of Taiyuan University of Technology, 2021, 52(6): 863-872. | |
24 | ZHAO Xin, HUANG Lei, LI Hongrui, et al. Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3 [J]. Journal of Catalysis, 2015, 36(11): 1886-1899. |
25 | HUANG Bangfu, WANG Defu, LI Jianli, et al. Cu-Fe/activated carbon catalyst for low-temperature CO-selective catalytic: Modification and denitration mechanism[J]. Environmental Progress & Sustainable Energy, 2022, 41(4): e13827. |
26 | FENG Xiangdong, LIU Shanjian, LI Yongjun, et al. Study of the performance of nitrogen-doped modified activated carbon as catalyst carrier for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Australian Journal of Chemistry, 2022, 75(3): 197-205. |
27 | LI Wei, TAN Shan, SHI Yun, et al. Utilization of sargassum based activated carbon as a potential waste derived catalyst for low temperature selective catalytic reduction of nitric oxides[J]. Fuel, 2015, 160: 35-42. |
28 | 黄宇翔, 于文吉, 赵广杰. KOH活化木质碳纤维的孔隙结构及其成孔机理[J]. 林业工程学报, 2018, 3(2): 82-87. |
HUANG Yuxiang, YU Wenji, ZHAO Guangjie. Pores tructure and generation reaction path of wood-based activated carbon fibers by KOH activation[J]. Journal of Forestry Engineering, 2018, 3(2): 82-87. | |
29 | JIANG Lijun, JIANG Xiaoyong, LIU Weizao, et al. Comparative study on the physicochemical properties and de-NO x performance of waste bamboo-derived low-temperature NH3-SCR catalysts[J]. Research on Chemical Intermediates, 2021, 47(12): 5303-5320. |
30 | LUO Ning, GAO Fengyu, LIU Hengheng, et al. Hierarchical structured Ti-doped CeO2 stabilized CoMn2O4 for enhancing the low-temperature NH3-SCR performance within highly H2O and SO2 resistance[J]. Applied Catalysis B: Environmental, 2024, 343: 123442. |
31 | 范孝雄, 郝丽芳, 范垂钢, 等. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
FAN Xiaoxiong, HAO Lifang, FAN Chuigang, et al. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst[J]. CIESC Journal, 2023, 74(9): 3821-3830. | |
32 | Kobra RAHBAR-SHAMSKAR, RASHIDI Alimorad, BANIYAGHOOB Sahar, et al. In-situ catalytic fast pyrolysis of reed as a sustainable method for production of porous carbon as VOCs adsorbents[J]. Journal of Analytical and Applied Pyrolysis, 2022, 164: 105520. |
33 | 张一鸣, 马善为, 朱谢飞, 等. 核桃壳热解分级冷凝产物分布特性研究[J]. 太阳能学报, 2021, 42(1): 365-370. |
ZHANG Yiming, MA Shanwei, ZHU Xiefei, et al. Distribution characteristics of products obtained from fractional condensation of walnut shell pyrolysis[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 365-370. | |
34 | XIA Yunbin, YANG Yuanyuan, CHEN Zhiqiang, et al. Boosting the low-temperature NH3-SCR performance via metals co-doping with inequality Mn/Ce ratios in the carbon-based catalyst prepared by Cr-containing leather waste[J]. Molecular Catalysis, 2023, 551: 113615. |
35 | 刘计省, 刘坚, 赵震, 等. 具有丰富介孔Cu-SAPO-34催化剂制备及其低温氨气选择性催化还原反应[J]. 催化学报, 2016, 37(5): 750-759. |
LIU Jixing, LIU Jian, ZHAO Zhen, et al. Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature[J]. Chinese Journal of Catalysis, 2016, 37(5): 750-759. | |
36 | QIAN Xiaoyu, MIAO Ling, JIANG Juxiang, et al. Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors[J]. Chemical Engineering Journal, 2020, 388: 124208. |
37 | NELSON Nicholas C, ANDANA Tahrizi, RAPPÉ Kenneth G, et al. Mechanistic insight into low temperature SCR by ceria-manganese mixed oxides incorporated into zeolites[J]. Catalysis Science & Technology, 2023, 13(4): 1111-1118. |
38 | 张莺. 烟气温度对SCR脱硝催化剂的影响[J]. 内蒙古煤炭经济, 2020(2): 189. |
ZHANG Ying. Effect of flue gas temperature on SCR denitration catalyst[J]. Inner Mongolia Coal Economy, 2020(2): 189. | |
39 | XIONG Shangchao, CHEN Jianjun, HUANG Nan, et al. The poisoning mechanism of gaseous HCl on low-temperature SCR catalysts: MnO x -CeO2 as an example[J]. Applied Catalysis B: Environmental, 2020, 267: 118668. |
40 | 黄秀兵, 王鹏, 陶进长, 等. CeO2修饰Mn-Fe-O复合材料及其NH3-SCR脱硝催化性能[J]. 无机材料学报, 2020, 35(5): 573-580. |
HUANG Xiubing, WANG Peng, TAO Jinchang, et al. CeO2 modified Mn-Fe-O composites and their catalytic performance for NH3-SCR of NO[J]. Journal of Inorganic Materials, 2020, 35(5): 573-580. |
[1] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
[2] | ZHOU Hao, WANG Xurui, ZHAO Huishuang, WEN Nini, SU Yaxin. Selective catalytic reduction of nitric oxide with propylene over CuCe-SAPO-34 catalysts under diesel engine exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3093-3099. |
[3] | GAO Fei, LIU Zhisong, PAN Keke, LIU Minmin, DAI Bin, DAN Jianming, YU Feng. Vermiculite-supported FeCe bimetallic catalyst for selective catalytic reduction of NO with CO [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1851-1862. |
[4] | ZHOU Qiang, YIN Chengyang, LIU Baijun, ZHAO Zhen. Research progress on the performance and mechanism of H2-assisted HC-SCR denitration [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6140-6154. |
[5] | GAO Zihan, YANG Runnong, WANG Zhaoying, SONG Yanhai, QIN Bin, YU Lin. Influence of zirconium modified carriers on the NH3-SCR performance of manganese-cerium composite catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6206-6214. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[9] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[10] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[11] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[12] | ZHOU Hao, ZHANG Heng, WEN Nini, WANG Xurui, XU Lu, LI Wei, SU Yaxin. Preparation and de-NO x performance of C3H6-SCR over Cu-SAPO-44 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1373-1382. |
[13] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
[14] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[15] | ZHANG Xuewei, HUANG Yaji, CHENG Haoqiang, WANG Sheng, ZHU Zhicheng, LI Jinlei, DING Xueyu, LI Yuxin, WEI Zekun, ZHANG Rongchu. On the catalytic performance of commercial SCR catalyst for SO3 generation [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6354-6362. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |