1 |
LAI J-K, WACHS I E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. ACS Catalysis, 2018, 8(7): 6537-6551.
|
2 |
WANG Ben, SONG Zijian, SUN Lushi. A review: Comparison of multi-air-pollutant removal by advanced oxidation processes—Industrial implementation for catalytic oxidation processes[J]. Chemical Engineering Journal, 2021, 409:128136.
|
3 |
付金艳, 王振峰, 白心蕊, 等. γ-Al2O3酸性修饰稀土尾矿NH3-SCR脱硝性能[J]. 中国环境科学, 2020, 40(9): 3741-3747.
|
|
FU Jinyan, WANG Zhenfeng, BAI Xinrui, et al. Denitration performance of NH3-SCR from γ-Al2O3 acid modified rare earth tailings[J]. China Environmental Science, 2020, 40(9):3741-3747.
|
4 |
GUO Kai, JI Jiawei, SONG Wang, et al. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review[J]. Applied Catalysis B: Environmental, 2021, 297: 120388.
|
5 |
ZHENG Chenghang, WANG Yifan, LIU Yong, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 241: 327-346.
|
6 |
SARBASSOV Yerbol, DUAN Lunbo, MANOVIC Vasilijie, et al. Sulfur trioxide formation/emissions in coal-fired air- and oxy-fuel combustion processes: A review[J]. Greenhouse Gases:Science and Technology, 2018, 8(3): 402-428.
|
7 |
尹子骏, 苏胜, 王中辉, 等. 燃煤烟气中SO3与NH4HSO4生成特性及其控制方法研究进展[J]. 化工进展, 2021, 40(4): 2328-2337.
|
|
YIN Zijun, SU Sheng, WANG Zhonghui, et al. Research progress on the characteristics and control methods of SO3 and NH4HSO4 formation in coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2328-2337.
|
8 |
CHAI Yanxiao, ZHANG Guizhen, HE Hong, et al. Theoretical study of the catalytic activity and anti-SO2 poisoning of a MoO3/V2O5 selective catalytic reduction catalyst[J]. ACS Omega, 2020, 5(42): 26978-26985.
|
9 |
李欣怡, 潘丹萍, 胡斌, 等. 燃煤烟气中SO3迁移转化特性及其控制的研究现状及展望[J]. 化工进展, 2018, 37(12): 4887-4896.
|
|
LI Xinyi, PAN Danping, HU Bin, et al. Research status and prospects of migration, transformation and control of SO3 from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4887-4896.
|
10 |
HUANG Rujin, ZHANG Yanlin, BOZZETTI Carlo, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222.
|
11 |
王志超, 陈阳, 杨复沫, 等. 北京市远郊冬季铵盐颗粒物的单颗粒质谱研究[J]. 中国环境科学, 2018, 38(6): 2012-2021.
|
|
WANG Zhichao, CHEN Yang, YANG Fumo, et al. Single-particle characterization of ammonium-containing particles during wintertime in suburb of Beijing[J]. China Environmental Science, 2018,38(6):2012-2021.
|
12 |
刘毅. 燃煤烟气中SO3气相生成的实验与反应动力学研究[J]. 锅炉技术, 2019, 50(6): 74-77.
|
|
LIU Yi. Experimental and reaction kinetics studies of SO3 homogeneous formation in coal-fired flue gas[J]. Boiler Technology, 2019, 50(6):74-77.
|
13 |
ZHANG Jie, LI Xiangcheng, CHEN Pingan, et al. Research status and prospect on vanadium-based catalysts for NH₃-SCR denitration[J]. Materials, 2018, 11(9): 1632.
|
14 |
张道军, 马子然, 孙琦, 等. 硫酸氢铵在钒基选择性催化还原催化剂表面的生成、作用及防治[J]. 化工进展, 2018, 37(7): 2635-2643.
|
|
ZHANG Daojun, MA Ziran, SUN Qi, et al. Formation mechanism, effects and prevention of NH4HSO4 formed on the surface of V2O5 based catalysts[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2635-2643.
|
15 |
LI Yuran, XIONG Jin, LIN Yuting, et al. Distribution of SO2 oxidation products in the SCR of NO over V2O5/TiO2 catalysts at different temperatures[J]. Industrial & Engineering Chemistry Research, 2020, 59(11): 5177-5185.
|
16 |
LU Jianyi, ZHOU Zhiyong, ZHANG Hanzhi, et al. Influenced factors study and evaluation for SO2/SO3 conversion rate in SCR process[J]. Fuel, 2019, 245: 528-533.
|
17 |
XIONG Jin, LI Yuran, LIN Yuting, et al. Formation of sulfur trioxide during the SCR of NO with NH3 over a V2O5/TiO2 catalyst[J]. RSC Advances, 2019, 9(67): 38952-38961.
|
18 |
QING Mengxia, LEI Siyuan, KONG Fanhai, et al. Analysis of ammonium bisulfate/sulfate generation and deposition characteristics as the by-product of SCR in coal-fired flue gas[J]. Fuel, 2022, 313: 122790.
|
19 |
SHI Yajuan, SHU Hang, ZHANG Yuhua, et al. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Fuel Processing Technology, 2016, 150: 141-147.
|
20 |
MAZIDI Mohammad, BEHBAHANI Reza Mosayebi, FAZELI Ali. Ce promoted V2O5 catalyst in oxidation of SO2 reaction[J]. Applied Catalysis B: Environmental, 2017, 209: 190-202.
|
21 |
CHOO Soo Tae, Sung Dae YIM, In-Sik NAM, et al. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3 [J]. Applied Catalysis B: Environmental, 2003, 44(3): 237-252.
|
22 |
FANG Zhitao, LIN Tao, XU Haidi, et al. Novel promoting effects of cerium on the activities of NO x reduction by NH3 over TiO2-SiO2-WO3 monolith catalysts[J]. Journal of Rare Earths, 2014, 32(10): 952-959.
|
23 |
KOBAYASHI Motonobu, KUMA Ryoji, MASAKI Sinyuki, et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3 [J]. Applied Catalysis B: Environmental, 2005, 60(3/4): 173-179.
|
24 |
ZUO Wujun, ZHANG Xiaoyu, LI Yuzhong, et al. Evaluation of the controlled condensation method for flue gas SO3/H2SO4 measurement[J]. Fuel Processing Technology, 2020, 206: 106461.
|
25 |
LIU Fudong, HE Hong, ZHANG Changbin, et al. Mechanism of the selective catalytic reduction of NO x with NH3 over environmental-friendly iron titanate catalyst[J]. Catalysis Today, 2011, 175(1): 18-25.
|
26 |
杨加强, 梅毅, 王驰, 等. 湿法烟气脱硝技术现状及发展[J]. 化工进展, 2017, 36(2): 695-704.
|
|
YANG Jiaqiang, MEI Yi, WANG Chi, et al. Current status and trends on wet flue gas denitration technology[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 695-704.
|
27 |
HUANG Li, ZENG Yiqing, GAO Yibo, et al. Promotional effect of phosphorus addition on improving the SO2 resistance of V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO[J]. Journal of Physics and Chemistry of Solids, 2022, 163: 110566.
|
28 |
MOULDER John F, STICKLE William F, SOBOL Peter E, et al. Handbook of X-ray photoelectron spectroscopy[M]. Minnesota: Perkin-Elmer Corporation, 1992.
|