Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 690-700.DOI: 10.16085/j.issn.1000-6613.2021-0425
• Industrial catalysis • Previous Articles Next Articles
GAO Tian(), ZHANG Yili, XIONG Zhuo, ZHAO Yongchun, ZHANG Junying()
Received:
2021-03-02
Revised:
2021-07-27
Online:
2022-02-23
Published:
2022-02-05
Contact:
ZHANG Junying
通讯作者:
张军营
作者简介:
高天(1997—),男,硕士研究生,研究方向为光催化氧化单质汞。E-mail:基金资助:
CLC Number:
GAO Tian, ZHANG Yili, XIONG Zhuo, ZHAO Yongchun, ZHANG Junying. Research progress of modified titanium oxide photocatalytic oxidation of elemental mercury and its influencing factors[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 690-700.
高天, 张伊黎, 熊卓, 赵永椿, 张军营. 改性氧化钛光催化氧化单质汞性能及其影响因素研究进展[J]. 化工进展, 2022, 41(2): 690-700.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0425
1 | 韩粉女, 钟秦. 燃煤烟气脱汞技术的研究进展[J]. 化工进展, 2011, 30(4): 878-885. |
HAN Fennü, ZHONG Qin. Research progress of removal of mercury from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 878-885. | |
2 | 崔夏, 马丽萍, 邓春玲, 等. 燃煤烟气中汞去除的研究进展[J]. 化工进展, 2011, 30(7): 1607-1612, 1636. |
CUI Xia, MA Liping, DENG Chunling, et al. Research progress of removing mercury from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2011, 30(7): 1607-1612, 1636. | |
3 | 陈博陶, 韩丽娜, 常丽萍, 等. 汞的吸附及氧化机理的理论研究进展[J]. 化工进展, 2017, 36(S1): 436-441. |
CHEN Botao, HAN Lina, CHANG Liping, et al. Theoretic research on the adsorption and oxidation mechanism of mercury[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 436-441. | |
4 | TIAN H Z, ZHU C Y, GAO J J, et al. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies[J]. Atmospheric Chemistry and Physics, 2015, 15(17): 10127-10147. |
5 | WU Q R, WANG S X, LIU K Y, et al. Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the minamata convention[J]. Environmental Science & Technology, 2018, 52(19): 11087-11093. |
6 | XUE W L, ZHANG G W, XU X F, et al. Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate[J]. Chemical Engineering Journal, 2011, 167(1): 397-402. |
7 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
8 | MONIZ S J A, SHEVLIN S A, MARTIN D J, et al. Visible-light driven heterojunction photocatalysts for water splitting – a critical review[J]. Energy & Environmental Science, 2015, 8(3): 731-759. |
9 | YULIATI L, YOSHIDA H. Photocatalytic conversion of methane[J]. Chemical Society Reviews, 2008, 37(8): 1592-1602. |
10 | YANG J P, MA S M, ZHAO Y C, et al. Elemental mercury removal from flue gas over TiO2 catalyst in an internal-illuminated honeycomb photoreactor[J]. Industrial & Engineering Chemistry Research, 2018, 57(51): 17348-17355. |
11 | 段钰锋, 朱纯, 佘敏, 等. 燃煤电厂汞排放与控制技术研究进展[J]. 洁净煤技术, 2019, 25(2): 1-17. |
DUAN Yufeng, ZHU Chun, SHE Min, et al. Research progress on mercury emission and control technologies in coal-fired power plants [J]. Clean Coal Technology, 2019, 25(2): 1-17. | |
12 | JI Z Y, HUANG B B, GAN M, et al. Recent progress on the clean and sustainable technologies for removing mercury from typical industrial flue gases: a review[J]. Process Safety and Environmental Protection, 2021, 150: 578-593. |
13 | 辛凤, 魏书洲, 张军峰, 等.燃煤烟气非碳基吸附剂脱汞研究进展[J]. 燃料化学学报, 2020, 48(12): 1409-1420. |
XIN Feng, WEI Shuzhou, ZHANG Junfeng, et al. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1409-1420. | |
14 | GUAN Y, LIU Y H, LYU Q, et al. Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: a review[J]. Journal of Hazardous Materials, 2021, 418: 126280-126280. |
15 | LIN M J, JING G H, SHEN H Z, et al. Mechanism of enhancement of photooxidation of Hg0 by CeO2-TiO2: effect of band structure on the formation of free radicals[J]. Chemical Engineering Journal, 2020, 382: 122827. |
16 | LIU D J, LI B, WU J, et al. Photocatalytic oxidation removal of elemental mercury from flue gas. A review[J]. Environmental Chemistry Letters, 2020, 18(2): 417-431. |
17 | DIEBOLD U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48(5/6/7/8): 53-229. |
18 | SANJINÉS R, TANG H, BERGER H, et al. Electronic structure of anatase TiO2 oxide[J]. Journal of Applied Physics, 1994, 75(6): 2945-2951. |
19 | KAVAN L, GRÄTZEL M, GILBERT S E, et al. Electrochemical and photoelectrochemical investigation of single-crystal anatase[J]. Journal of the American Chemical Society, 1996, 118(28): 6716-6723. |
20 | ANPO M, YAMASHITA H, ICHIHASHI Y, et al. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts[J]. Journal of Electroanalytical Chemistry, 1995, 396(1/2): 21-26. |
21 | LEE T G, BISWAS P. Kinetics of mercury capture using titania sorbents[J]. Journal of Aerosol Science, 1998, 29: S577-S578. |
22 | BISWAS P, OWENS T M, WU C Y. Control of toxic metal emissions from combustors using vapor phase sorbent materials[J]. Journal of Aerosol Science, 1995, 26(S1): S217-S218. |
23 | LEE T G, BISWAS P, HEDRICK E. Comparison of Hg0 capture efficiencies of three in situ generated sorbents[J]. AIChE Journal, 2001, 47(4): 954-961. |
24 | 杨珊, 张军营, 赵永椿, 等. 纳米TiO2-活性炭的制备及光催化脱汞初探[J]. 工程热物理学报, 2010, 31(2): 339-342. |
YANG Shan, ZHANG Junying, ZHAO Yongchun, et al. Pre-investigation of nanostructured TiO2-activated carbon composite for photo catalytic oxidation removal of mercury vapor[J]. Journal of Engineering Thermophysics, 2010, 31(2): 339-342. | |
25 | 杨珊, 张军营, 袁媛, 等. 纳米TiO2-硅酸铝纤维的制备及光催化脱汞研究[J]. 工程热物理学报, 2011, 32(1): 152-156. |
YANG Shan, ZHANG Junying, YUAN Yuan, et al. Composites of nano TiO2-aluminium silicate fiber for photocatalytic removal of mercury vapor[J]. Journal of Engineering Thermophysics, 2011, 32(1): 152-156. | |
26 | 袁媛, 赵永椿, 张军营, 等. TiO2-硅酸铝纤维纳米复合材料光催化脱硫脱硝脱汞的实验研究[J]. 中国电机工程学报, 2011, 31(11): 79-85. |
YUAN Yuan, ZHAO Yongchun, ZHANG Junying, et al. Study on photocatalytic experiments of desulfurization,denitrification and mercury removal using a TiO2-aluminum silicate fiber nanocomposite[J]. Proceedings of the CSEE, 2011, 31(11): 79-85. | |
27 | 熊卓, 赵永椿, 张军营, 等. Ti基CO2光催化还原及其影响因素研究进展[J]. 化工进展, 2013, 32(5): 1043-1052, 1162. |
XIONG Zhuo, ZHAO Yongchun, ZHANG Junying, et al. Research progress in photocatalytic reduction of CO2 using titania-based catalysts[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1043-1052, 1162. | |
28 | 崔星, 石建稳, 陈少华. TiO2光催化降解气态污染物的影响因素研究进展[J]. 化工进展, 2013, 32(10): 2377-2386. |
CUI Xing, SHI Jianwen, CHEN Shaohua.Influence factors of TiO2 photocatalytic degradation of gaseous pollutants[J]. Chemical Industry and Engineering Progress, 2013, 32(10): 2377-2386. | |
29 | LI Y, MURPHY P, WU C Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite[J]. Fuel Processing Technology, 2008, 89(6): 567-573. |
30 | LI Y, WU C Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2- TiO2 nanocomposite[J]. Environmental Science & Technology, 2006, 40(20): 6444-6448. |
31 | SHEN H Z, IE I R, YUAN C S, et al. The enhancement of photo-oxidation efficiency of elemental mercury by immobilized WO3/TiO2 at high temperatures[J]. Applied Catalysis B: Environmental, 2016, 195: 90-103. |
32 | SUN X M, WU J, TIAN F G, et al. Synergistic effect of surface defect and interface heterostructure on TiO2/BiOIO3 photocatalytic oxide gas-phase mercury[J]. Materials Research Bulletin, 2018, 103: 247-258. |
33 | WANG H Q, ZHOU S Y, XIAO L, et al. Titania nanotubes — a unique photocatalyst and adsorbent for elemental mercury removal[J]. Catalysis Today, 2011, 175(1): 202-208. |
34 | ZHUANG Z K, YANG Z M, ZHOU S Y, et al. Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation[J]. Chemical Engineering Journal, 2014, 253: 16-23. |
35 | WANG L L, ZHAO Y C, ZHANG J Y. Comprehensive evaluation of mercury photocatalytic oxidation by cerium-based TiO2 nanofibers[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 3804-3812. |
36 | TSAI C Y, LIU C W, HSI H C, et al. Synthesis of Ag-modified TiO2 nanotube and its application in photocatalytic degradation of dyes and elemental mercury[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(10): 3251-3262. |
37 | WU J, LI X, REN J X, et al. Experimental study of TiO2 hollow microspheres removal on elemental mercury in simulated flue gas[J]. Journal of Industrial and Engineering Chemistry, 2015, 32: 49-57. |
38 | ZHOU J S, HOU W H, QI P, et al. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas[J]. Environmental Science & Technology, 2013, 47(17): 10056-10062. |
39 | WU J, LI C E, ZHAO X Y, et al. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2[J]. Applied Catalysis B: Environmental, 2015, 176/177: 559-569. |
40 | LEE W, BAE G N. Removal of elemental mercury Hg0 by nanosized V2O5/TiO2 catalysts[J]. Environmental Science & Technology, 2009, 43(5): 1522-1527. |
41 | CHEN S S, HSI H C, NIAN S H, et al. Synthesis of N-doped TiO2 photocatalyst for low-concentration elemental mercury removal under various gas conditions[J]. Applied Catalysis B: Environmental, 2014, 160/161: 558-565. |
42 | TSAI C Y, HSI H C, KUO T H, et al. Preparation of Cu-doped TiO2 photocatalyst with thermal plasma torch for low-concentration mercury removal[J]. Aerosol and Air Quality Research, 2013, 13(2): 639-648. |
43 | TSAI C Y, PAN Y T, TSENG Y H, et al. Influence of carbon-functional groups with less hydrophilicity on a TiO2 photocatalyst for removing low-level elemental mercury[J]. Sustainable Environment Research, 2017, 27(2): 70-76. |
44 | 周思瑶. TiO2基纳米管吸附-光催化氧化脱除燃煤烟气中单质汞的研究[D]. 杭州: 浙江大学, 2011. |
ZHOU Siyao. Adsorption-photocatalytic oxidation performance of TiO2 based nanotubes in elemental mercury removal[D]. Hangzhou: Zhejiang University, 2011. | |
45 | 李忺. TiO2基空心微球制备及其光催化脱除燃煤烟气汞的研究[D]. 上海: 上海电力学院, 2015. |
LI Xian. Study on the preparation of titanium oxide-based hollow microspheres and its photocatalytic removal of flue gas mercury[D]. Shanghai: Shanghai University of Electric Power, 2015. | |
46 | RODRÍGUEZ S, ALMQUIST C, LEE T G, et al. A mechanistic model for mercury capture with in situ-generated titania particles: role of water vapor[J]. Journal of the Air & Waste Management Association, 2004, 54(2): 149-156. |
47 | SALEHIFAR N, NIKFARJAM A. Improvement the visible light photocatalytic activity of gold nanoparticle, Co2O3 and nitrogen doped TiO2 nanofibers[J]. Materials Letters, 2017, 188: 59-62. |
48 | LENZI G G, FÁVERO C V B, COLPINI L M S, et al. Photocatalytic reduction of Hg(Ⅱ) on TiO2 and Ag/TiO2 prepared by the sol-gel and impregnation methods[J]. Desalination, 2011, 270(1/2/3): 241-247. |
49 | TSAI C Y, KUO T H, HSI H C. Fabrication of Al-doped TiO2 visible-light photocatalyst for low-concentration mercury removal[J]. International Journal of Photoenergy, 2012, 2012: 1-8. |
50 | LIU Y, WANG Y J, WANG H Q, et al. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method[J]. Catalysis Communications, 2011, 12(14): 1291-1294. |
51 | YU J G, XIANG Q J, ZHOU M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures[J]. Applied Catalysis B: Environmental, 2009, 90(3/4): 595-602. |
52 | 代学伟, 吴江, 齐雪梅, 等. Fe掺杂TiO2催化剂制备及其光催化脱汞机理[J]. 环境科学研究, 2014, 27(8): 827-834. |
DAI Xuewei, WU Jiang, QI Xuemei, et al. Preparation of Fe-doped titania by sol-gel method and photocatalytic removal of gaseous mercury[J]. Research of Environmental Sciences, 2014, 27(8): 827-834. | |
53 | TSAI C Y, LIU C W, LAI L C, et al. Fabrication and characterization of tin-modified TNT via different tin compounds treatment[J]. Materials Research Bulletin, 2018, 97: 222-231. |
54 | LINSEBIGLER A L, LU G Q, YATES J T JR. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3): 735-758. |
55 | GUAN Y, HU T, WU J, et al. Enhanced photocatalytic activity of TiO2/graphene by tailoring oxidation degrees of graphene oxide for gaseous mercury removal[J]. Korean Journal of Chemical Engineering, 2019, 36(1): 115-125. |
56 | HSI H C, TSAI C Y. Preparation of oxygen-vacant TiO2-x and activated carbon fiber composite using a single-step thermal plasma method for low-concentration elemental mercury removal[J]. Chemical Engineering Journal, 2012, 200/201/202: 18-24. |
57 | 张冲, 吴江, 陈先托. 铈碳共掺杂TiO2脱除烟气汞的实验研究[J]. 上海电力学院学报, 2016, 32(2): 135-139. |
ZHANG Chong, WU Jiang, CHEN Xiantuo. Experiment research of mercury removal using Ce,C-TiO2 from flue gas[J]. Journal of Shanghai University of Electric Power, 2016, 32(2): 135-139. | |
58 | CHEN D M, JIANG Z Y, GENG J Q, et al. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity[J]. Industrial & Engineering Chemistry Research, 2007, 46(9): 2741-2746. |
59 | XU J, WEI Y L, HUANG Y F, et al. Solvothermal synthesis nitrogen doped SrTiO3 with high visible light photocatalytic activity[J]. Ceramics International, 2014, 40(7): 10583-10591. |
60 | HONG X T, WANG Z P, CAI W M, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide[J]. Chemistry of Materials, 2005, 17(6): 1548-1552. |
61 | OHNO T, MITSUI T, MATSUMURA M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chemistry Letters, 2003, 32(4): 364-365. |
62 | UMEBAYASHI T, YAMAKI T, TANAKA S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2[J]. Chemistry Letters, 2003, 32(4): 330-331. |
63 | 杨振美. 非金属改性TiO2光催化氧化脱除烟气中零价汞的实验研究[D]. 杭州: 浙江大学, 2014. |
YANG Zhenmei. Experimental study on photocatalytic oxidation of elemental mercurv by nonmetal-doped TiO2[D]. Hangzhou: Zhejiang University, 2014. | |
64 | TSENG I H, WU J C S. Chemical states of metal-loaded titania in the photoreduction of CO2[J]. Catalysis Today, 2004, 97(2/3): 113-119. |
65 | YUAN Y, ZHAO Y C, LI H L, et al. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas[J]. Journal of Hazardous Materials, 2012, 227/228: 427-435. |
66 | 袁媛, 张军营, 樊国祥, 等. 静电纺丝法制备TiO2-WO3纳米纤维及光催化脱汞的研究[J]. 中国电机工程学报, 2012, 32(32): 44-49. |
YUAN Yuan, ZHANG Junying, FAN Guoxiang, et al. Electrospun TiO2-WO3 nanofibers for photocatalytic removal of mercury[J]. Proceedings of the CSEE, 2012, 32(32): 44-49. | |
67 | 袁媛, 张军营, 赵永椿, 等. In2O3与CuO掺杂TiO2纳米纤维光催化脱汞的研究[J]. 工程热物理学报, 2013, 34(12): 2405-2408. |
YUAN Yuan, ZHANG Junying, ZHAO Yongchun, et al. Photocatalytic removal of mercury using In2O3 or CuO doped TiO2 nanofibers[J]. Journal of Engineering Thermophysics, 2013, 34(12): 2405-2408. | |
68 | 袁媛, 张军营, 赵永椿, 等. TiO2-Ag2O复合纳米纤维烟气脱汞实验研究[J]. 华中科技大学学报(自然科学版), 2012, 40(6): 99-103. |
YUAN Yuan, ZHANG Junying, ZHAO Yongchun, et al. Removing elemental mercury by TiO2-Ag2O nanofiber[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(6): 99-103. | |
69 | LI H L, LI Y, WU C Y, et al. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 186-193. |
70 | 袁媛, 张军营, 李小龙, 等. TiO2-V2O5纳米纤维光催化氧化烟气中的Hg0[J]. 化工学报, 2012, 63(S2): 69-75. |
YUAN Yuan, ZHANG Junying, LI Xiaolong, et al. Photocatalytic oxidation of Hg0 in flue gas using TiO2-V2O5 nanofibers[J]. CIESC Journal, 2012, 63(S2): 69-75. | |
71 | 周肖. MOx/TiO2复合材料制备及其光催化脱汞实验研究[D]. 上海: 上海电力学院, 2018. |
ZHOU Xiao. Preparation of MOx/TiO2 composites and experimental study on photocatalytic oxidation of mercury[D]. Shanghai: Shanghai University of Electric Power, 2018. | |
72 | JI L, SREEKANTH P M, SMIRNIOTIS P G, et al. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas[J]. Energy & Fuels, 2008, 22(4): 2299-2306. |
73 | PITONIAK E, WU C Y, LONDEREE D, et al. Nanostructured silica-gel doped with TiO2 for mercury vapor control[J]. Journal of Nanoparticle Research, 2003, 5(3/4): 281-292. |
74 | LI Y, WU C Y. Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite[J]. Environmental Engineering Science, 2007, 24(1): 3-12. |
75 | PITONIAK E, WU C Y, MAZYCK D W, et al. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal[J]. Environmental Science & Technology, 2005, 39(5): 1269-1274. |
76 | 王路路. Hg/SO2/NOx的释放及其光催化氧化脱除机制的研究[D]. 武汉: 华中科技大学, 2018. |
WANG Lulu. Study on emissions of Hg/SO2/NOx and photocatalytic removal mechanisms[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
77 | 袁媛. 新型TiO2基纳米材料一体化脱除燃煤烟气中多种污染物的研究[D]. 武汉: 华中科技大学, 2012. |
YUAN Yuan. Removal of multiple pollutants from coal combustion flue gas over novel TiO2-based nanomaterials[D]. Wuhan: Huazhong University of Science and Technology, 2012. | |
78 | 杨珊. 纳米TiO2复合物光催化氧化脱除单质汞的实验研究[D]. 武汉: 华中科技大学, 2009. |
YANG Shan. Investigation of nano TiO2 composites for photocatalytic oxidation removal of mercury vapor[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
79 | WANG X Q, ZHOU Y N, LI R, et al. Removal of Hg0 from a simulated flue gas by photocatalytic oxidation on Fe and Ce co-doped TiO2 under low temperature[J]. Chemical Engineering Journal, 2019, 360: 1530-1541. |
80 | WU J, LI C E, CHEN X T, et al. Photocatalytic oxidation of gas-phase Hg0 by carbon spheres supported visible-light-driven CuO-TiO2[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 416-425. |
81 | YUAN Y, ZHANG J Y, LI H L, et al. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chemical Engineering Journal, 2012, 192: 21-28. |
82 | 谭增强, 刘豪, 邱建荣, 等. 榆木焦负载纳米TiO2光催化剂的制备及其脱除单质汞的试验研究[J]. 中国电机工程学报, 2010, 30(29): 37-41. |
TAN Zengqiang, LIU Hao, QIU Jianrong, et al. Preparation of elm char/nano-TiO2 photocatalyst and experimental studies on the removal of elemental mercury[J]. Proceedings of the CSEE, 2010, 30(29): 37-41. | |
83 | LEE T G, BISWAS P, HEDRICK E. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation[J]. Industrial & Engineering Chemistry Research, 2004, 43(6): 1411-1417. |
84 | HSI H C, TSAI C Y. Synthesis of TiO2-x visible-light photocatalyst using N2/Ar/He thermal plasma for low-concentration elemental mercury removal[J]. Chemical Engineering Journal, 2012, 191: 378-385. |
85 | TSAI C Y, HSI H C, BAI H, et al. TiO2-x nanoparticles synthesized using He/Ar thermal plasma and their effectiveness on low-concentration mercury vapor removal[J]. Journal of Nanoparticle Research, 2011, 13(10): 4739-4748. |
86 | SHEN H Z, IE I R, YUAN C S, et al. Removal of elemental mercury by TiO2 doped with WO3 and V2O5 for their photo- and thermo-catalytic removal mechanisms[J]. Environmental Science and Pollution Research, 2016, 23(6): 5839-5852. |
87 | YU J C C, NGUYEN V H, LASEK J, et al. NOx abatement from stationary emission sources by photo-assisted SCR: lab-scale to pilot-scale studies[J]. Applied Catalysis A: General, 2016, 523: 294-303. |
88 | 马斯鸣. 蜂窝陶瓷光纤反应器光催化脱汞研究[D]. 武汉: 华中科技大学, 2017. |
MA Siming. Enhanced photo-catalytic oxidation of elemental mercury using fiber-illuminated honeycomb photoreactor[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
89 | YU Y H, PAN Y T, WU Y T, et al. Photocatalytic NO reduction with C3H8 using a monolith photoreactor[J]. Catalysis Today, 2011, 174(1): 141-147. |
90 | WANG L L, ZHAO Y C, ZHANG J Y. Electrospun cerium-based TiO2 nanofibers for photocatalytic oxidation of elemental mercury in coal combustion flue gas[J]. Chemosphere, 2017, 185: 690-698. |
[1] | DI Guancheng, ZHOU Qiang, TAO Xin, SHANG Yu, SONG Tao, LU Ping, XU Guiling. Preparation of sulfur-doped mesoporous carbon and its mercury removal [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2761-2769. |
[2] | ZHANG Xuan, SONG Xiaosan, ZHAO Po, DONG Yuanhua, LIU Yun. A critical review of advanced oxidation technology to treat 1,4-dioxane pollution [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 380-388. |
[3] | LI Bing, ZHANG Qilong, WANG Meng, LI Jichen, XI Wen, ZHOU Can. Research progress on removal of HCl from coal-fired flue gas by alkaline absorbent [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 404-410. |
[4] | ZHAO Rui, ZHANG Yi, YU Xuehai, SHI Xiaohong, LIU Yi, WANG Peng, HAN Tao. SCR low-temperature catalyst test and NH3-slip distribution profile on the pilot platform [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4610-4615. |
[5] | SU Biyun, RAN Liangtao, HU Yahe, ZHANG Ao, HAN Qiaoqiao, WU Jindi, LIU Yiting, MENG Zuchao. Research progress on demulsification of petroleum Pickering emulsion by molecular oxidation, photocatalytic oxidation and electrochemical oxidation [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3995-4002. |
[6] | BIAN Junjie, WANG Wanyuan, MAN Hengxiao, WEN Chengxin. BiOX(Cl, Br, I)/Bi2WO6 heterojunction composites as photocatalysts for high concentration NO removal [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6094-6101. |
[7] | HOU Xuejun, ZHANG Xiaoming, CHENG Wenbo, WANG Xin, WANG Chunxia, XU Shengming, HUANG Guoyong. Research on disposal methods of spent vanadium-titanium-based catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5313-5324. |
[8] | Hongtao ZHAO, Shumin WANG. Key parameters and energy consumption analysis of amine decarburization regeneration system with MVR for coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 256-262. |
[9] | Shouyi DING,Yaji HUANG,Hao CHEN,Lu DONG,Conghui FAN,Huajun HU,Erbing QI. Mercury removal performance of CuCl2-modified magnetic attapulgite [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1187-1195. |
[10] | Rui HUANG, Yang YANG, Wenqing XU, Jixiang ZHANG, Tingyu ZHU. Research progress of metal sulfide adsorbents for removing mercury in flue gas [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5243-5251. |
[11] | Jiwei HU, Yufeng DUAN, Xinze GENG, Weimeng ZHAO, Zaili XIONG, Ziqian ZHANG, Jixin LIANG, Xuanyu HU, Guanxun SUN. Effect of ball milling time on mercury removal by mechanical-chemical NaBr modified fly ash [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4717-4725. |
[12] | Weifeng ZHANG,Juan LI,Qiuhua WANG,Zhaoxiong DENG,Lulu WANG. Review on membrane wettability of membrane CO2 absorption method from coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3866-3873. |
[13] | Fan ZHANG,Yufeng DUAN,Shuai LIU,Jincheng LU,Shaojun REN,Hongqi WEI,Jun WANG. Mercury removal performance of bromine-modified coconut shell activated carbon in real flue gas [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3881-3888. |
[14] | Ping LU, Jiateng SHI, Yangtian YE, Hewei JIANG. In-duct injection mercury removal characteristics of biochar prepared under biomass reburning condition [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2471-2478. |
[15] | ZHOU Qiang, DUAN Yufeng, LU Ping. Research progress on in-duct mercury removal by sorbent injection in power plant [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4460-4467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |