1 | XU Wen, HUSSAIN Arshad, LIU Yangxian. A review on modification methods of adsorbents for elemental mercury from flue gas[J]. Chemical Engineering Journal, 2018, 346: 692-711. | 2 | DRANGA Beatrice Andreea, LAZAR Liliana, KOESER Heinz. Oxidation catalysts for elemental mercury in flue gases: a review[J]. Catalysts, 2012, 2(1): 139-170. | 3 | SHA Qinge, LU Menghua, HUANG Zhijiong, et al. Anthropogenic atmospheric toxic metals emission inventory and its spatial characteristics in Guangdong Province, China[J]. Science of the Total Environment, 2019, 670: 1146-1158. | 4 | GAO Yanshan, ZHANG Zhang, WU Jingwen, et al. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases[J]. Environmental Science & Technology, 2013, 47(19): 10813-10823. | 5 | HYLANDER Lars D, HERBERT Roger B. Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores[J]. Environmental Science & Technology, 2008, 42(16): 5971-5977. | 6 | United Nations Environment Programme. Global mercury assessment 2018: report of UNEP Chemicals and Health Branch [R]. Geneva: UNEP, 2019 | 7 | ZHAO Shilin, PUDASAINEE Deepak, DUAN Yufeng, et al. A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Progress in Energy and Combustion Science, 2019, 73: 26-64. | 8 | SHI Mengting, LUO Guangqian, XU Yang, et al. Using H2S plasma to modify activated carbon for elemental mercury removal[J]. Fuel, 2019, 254: 115549. | 9 | Serre SHANNON D, Silcox GEOFFREY D. Adsorption of elemental mercury on the residual carbon in coal fly ash[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1723-1730. | 10 | ZHANG Huawei, LIU Xiuli, WANG Li, et al. Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke[J]. Scientific World Journal, 2014, 2014: 260141. | 11 | 府师敏, 陈美玲, 卢平. 改性钙基吸附剂脱汞性能的实验研究[J]. 环境工程, 2018, 36(1): 103-107. | 11 | FU Shimin, CHEN Meiling, LU Ping. Experimental study on mercury adsorption capacity on modified Ca-based sorbents[J]. Environmental Engineering, 2018, 36(1): 103-107. | 12 | DONG Lu, HUANG Yaji, CHEN Hao, et al. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas[J]. Energy & Fuels, 2019, 33(8): 7522-7533. | 13 | 王建英, 马丽萍. 盐酸溶液改性蛭石对气态单质汞的吸附性能[J]. 化工环保, 2008, 28(4): 292-295. | 13 | WANG Jianying, MA Liping. Study on gas-phase elementary mercury adsorption by HCl-modified vermiculite[J]. Environmental Protection of Chemical Industry, 2008, 28(4): 292-295. | 14 | HE Chuan, SHEN Boxiong, CHI Guilong, et al. Elemental mercury removal by CeO2/TiO2-PILCs under simulated coal-fired flue gas[J]. Chemical Engineering Journal, 2016, 300: 1-8. | 15 | 陈建涛, 马丽萍, 资泽城, 等. 5A分子筛的改性制备及其对汞的吸附研究[J]. 硅酸盐通报, 2014, 33(9): 2164-2169. | 15 | CHEN Jiantao, MA Liping, ZI Zecheng, et al. Study on the preparation of modified 5A molecular sieve and its adsorption of mercury[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(9): 2164-2169. | 16 | TONG Li, XU Wenqing, QI Hao, et al. Enhanced effect of O/N groups on the Hg0 removal efficiency over the HNO3-modified activated carbon[J]. Acta Physica-Chimica Sinica, 2015, 31(3): 512-518. | 17 | SUN Ping, ZHANG Bi, ZENG Xiaobo, et al. Deep study on effects of activated carbon’s oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method[J]. Fuel, 2017, 200: 100-106. | 18 | LI Na, WEI Hongqi, DUAN Yufeng, et al. Experimental study on mercury adsorption and adsorbent regeneration of sulfur-loaded activated carbon[J]. Energy & Fuels, 2018, 32(10): 11023-11029. | 19 | ZHANG Bi, ZENG Xiaobo, XU Ping, et al. Using the novel method of nonthermal plasma to add Cl active sites on activated carbon for removal of mercury from flue gas[J]. Environmental Science & Technology, 2016, 50(21): 11837-11843. | 20 | QI Hao, XU Wenqing, WANG Jian, et al. Hg0 removal from flue gas over different zeolites modified by FeCl3[J]. Journal of Environmental Sciences, 2015, 28: 110-117. | 21 | LIU Xi, JIANG Shaojian, LI Hailong, et al. Elemental mercury oxidation over manganese oxide octahedral molecular sieve catalyst at low flue gas temperature[J]. Chemical Engineering Journal, 2019, 356: 142-150. | 22 | FAN Xiaopeng, LI Caiting, ZENG Guangming, et al. The effects of Cu/HZSM-5 on combined removal of Hg0 and NO from flue gas[J]. Fuel Processing Technology, 2012, 104: 325-331. | 23 | CHALKIDIS Anastasios, JAMPAIAH Deshetti, AMIN Mohamad Hassan, et al. CeO2-Decorated α-MnO2 nanotubes: a highly efficient and regenerable sorbent for elemental mercury removal from natural gas[J]. Langmuir, 2019, 35(25): 8246-8256. | 24 | WU Yinghong, XU Wenqing, YANG Yang, et al. Support effect of Mn-based catalysts for gaseous elemental mercury oxidation and adsorption[J]. Catalysis Science & Technology, 2018, 8(1): 297-306. | 25 | JAMPAIAH Deshetti, IPPOLITO Samuel J, SABRI Ylias M, et al. Ceria-zirconia modified MnOx catalysts for gaseous elemental mercury oxidation and adsorption[J]. Catalysis Science & Technology, 2016, 6(6): 1792-1803. | 26 | XIE Jiangkun, YAN Naiqiang, YANG Shijian, et al. Synthesis and characterization of nano-sized Mn-TiO2 catalysts and their application to removal[J]. Research on Chemical Intermediates, 2012, 38(8): 2511-2522. | 27 | ZHANG Xiao, SHEN Boxiong, ZHU Sheaowen, et al. UiO-66 and its Br-modified derivates for elemental mercury removal[J].Journal of Hazardous Materials, 2016, 320: 556-563. | 28 | MARTELLARO P J, MOORE G A, PETERSON E S, et al. Environmental application of mineral sulfides for removal of gas-phase Hg0 and aqueous Hg2+[J]. Separation Science and Technology, 2001, 36(5/6): 1183-1196. | 29 | YANG Zequn, LI Hailong, YANG Jianping, et al. Nanosized copper selenide functionalized zeolitic imidazolate framework-8 (CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Advanced Functional Materials, 2019, 29(17): 1807191. | 30 | ZHAO Haitao, MU Xueliang, YANG Gang, et al. Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants[J]. Applied Energy, 2017, 207: 254-264. | 31 | MEI Jian, WANG Chang, KONG Lingnan, et al. Outstanding performance of recyclable amorphous MoS3 supported on TiO2 for capturing high concentrations of gaseous elemental mercury: mechanism, kinetics, and application[J]. Environmental Science & Technology, 2019, 53(8): 4480-4489. | 32 | LIU Hui, YOU Zhiwen, YANG Shu, et al. High-efficient adsorption and removal of elemental mercury from smelting flue gas by cobalt sulfide[J]. Environmental Science and Pollution Research International, 2019, 26(7): 6735-6744. | 33 | LIU Wei, XU Haomiao, LIAO Yong, et al. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas[J]. Fuel, 2019, 235: 847-854. | 34 | ZHAO Haitao, FAN Hua, YANG Gang, et al. Integrated dynamic and steady state method and its application on the screening of MoS2 nanosheet-containing adsorbents for Hg0 capture[J]. Energy & Fuels, 2018, 32(4): 5338-5344. | 35 | LI Hailong, ZHU Lei, WANG Jun, et al. Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas[J]. Environmental Science & Technology, 2016, 50(17): 9551-9557. | 36 | YANG Zequn, LI Haillong, Feng Shihao, et al. Multiform sulfur adsorption centers and copper-terminated active sites of nano-CuS for efficient elemental mercury capture from coal combustion flue gas[J]. Langmuir, 2018, 34(30): 8739-8749. | 37 | LIU Wei, ZHOU Yongxian, HUA Yinfeng, et al. A sulfur-resistant CuS-modified active coke for mercury removal from municipal solid waste incineration flue gas[J]. Environmental Science and Pollution Research International, 2019, 26(24): 24831-24839. | 38 | LIAO Yong, XU Haomiao, LIU Wei, et al. One step interface activation of ZnS using cupric ions for mercury recovery from nonferrous smelting flue gas[J]. Environmental Science & Technology, 2019, 53(8): 4511-4518. | 39 | ZOU Sijie, LIAO Yong, TAN Wei, et al. H2S-modified natural ilmenite: a recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 10060-10068. | 40 | HUO Qihuang, WANG Yahui, CHEN Huijun, et al. ZnS/AC sorbent derived from the high sulfur petroleum coke for mercury removal[J]. Fuel Process Technology, 2019, 191: 36-43. | 41 | ZHAO Haitao, YANG Gang, MU Xueliang, et al. Hg0 capture over MoS2 nanosheets containing adsorbent: effects of temperature, space velocity, and other gas species[J]. Energy Procedia, 2017, 105: 4408-4413. | 42 | LI Hailong, ZHU Lei, WANG Jun, et al. Effect of nitrogen oxides on elemental mercury removal by nanosized mineral sulfide[J]. Environmental Science & Technology, 2017, 51(15): 8530-8536. | 43 | YANG Zequn, LI Hailong, QU Wenqi, et al. Role of sulfur trioxide (SO3) in gas-phase elemental mercury immobilization by mineral sulfide[J]. Environmental Science & Technology, 2019, 53(6): 3250-3257. | 44 | KONG Lingnan, ZOU Sijie, MEI Jian, et al. Outstanding resistance of H2S-modified Cu/TiO2 to SO2 for capturing gaseous Hg0 from nonferrous metal smelting flue gas: performance and reaction mechanism[J]. Environmental Science & Technology, 2018, 52(17): 10003-10010. | 45 | LI Hailong, FENG Shihao, YANG Zequn, et al. Density functional theory study of mercury adsorption on CuS surface: effect of typical flue gas components[J]. Energy & Fuels, 2019, 33(2): 1540-1546. | 46 | LI Hailong, FENG Shihao, QU Wenqi, et al. Adsorption and oxidation of elemental mercury on chlorinated ZnS surface[J]. Energy & Fuels, 2018, 32(7): 7745-7751. | 47 | ZHAO Jiexia, LI Hailong, YANG Zequn, et al. Dual roles of nano-sulfide in efficient removal of elemental mercury from coal combustion flue gas within a wide temperature range[J]. Environmental Science & Technology, 2018, 52(21): 12926-12933. | 48 | MU Xueliang, GAO Xiang, ZHAO Haitao, et al. Density functional theory study of the adsorption of elemental mercury on a 1T-MoS2 monolayer[J]. Journal of Zhejiang University: Science A, 2018, 19(1): 60-67. | 49 | ZHAO Haitao, MU Xueliang, YANG Gang, et al. Microwave-induced activation of additional active edge sites on the MoS2 surface for enhanced Hg0 capture[J]. Applied Surface Science, 2017, 420: 439-445. | 50 | QUAN Zongwen, HUANG Wenjun, LIAO Yong, et al. Study on the regenerable sulfur-resistant sorbent for mercury removal from nonferrous metal smelting flue gas[J]. Fuel, 2019, 241: 451-458. | 51 | SUN Yue, LIU Yuanli, LOU Zimo, et al. Enhanced performance for Hg(Ⅱ) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: stabilization effects and removal mechanism[J]. Chemical Engineering Journal, 2018, 344: 616-624. | 52 | K Suresh Kumar REDDY, SHOAIBI Ahmed AL, SRINIVASAKANNAN C. Mercury removal using metal sulfide porous carbon complex[J]. Process Safety and Environmental Protection, 2018, 114: 153-158. | 53 | ZHAO Haitao, YANG Gang, GAO Xiang, et al. Hg0 capture over CoMoS/gamma-Al2O3 with MoS2 nanosheets at low temperatures[J]. Environmental Science & Technology, 2016, 50(2): 1056-1064. |
|