Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 526-537.DOI: 10.16085/j.issn.1000-6613.2022-0596
• Resources and environmental engineering • Previous Articles Next Articles
FU Jia1(), CHEN Lunjian1, XU Bing1,2(), HUA Shaofeng1, LI Congqiang1, YANG Mingkun1, XING Baolin1,2, YI Guiyun1,2
Received:
2022-04-08
Revised:
2022-05-24
Online:
2023-02-20
Published:
2023-01-25
Contact:
XU Bing
付佳1(), 谌伦建1, 徐冰1,2(), 华绍烽1, 李从强1, 杨明坤1, 邢宝林1,2, 仪桂云1,2
通讯作者:
徐冰
作者简介:
付佳(1997—),女,硕士研究生,研究方向为生物化工。E-mail:fujia3700@163.com。
基金资助:
CLC Number:
FU Jia, CHEN Lunjian, XU Bing, HUA Shaofeng, LI Congqiang, YANG Mingkun, XING Baolin, YI Guiyun. Microbial degradation of phenol in simulated coal gasification wastewater[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 526-537.
付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0596
试验项目 | 试验结果 | 试验项目 | 试验结果 |
---|---|---|---|
革兰氏染色 | G- | 淀粉水解试验 | + |
明胶液化试验 | - | 氧化酶试验 | + |
甲基红试验 | - | 过氧化氢酶试验 | + |
吲哚试验 | - | V-P试验 | + |
硝酸盐还原试验 | - |
试验项目 | 试验结果 | 试验项目 | 试验结果 |
---|---|---|---|
革兰氏染色 | G- | 淀粉水解试验 | + |
明胶液化试验 | - | 氧化酶试验 | + |
甲基红试验 | - | 过氧化氢酶试验 | + |
吲哚试验 | - | V-P试验 | + |
硝酸盐还原试验 | - |
保留时间/min | 匹配项名称 | 质量分数/% | 相对浓度/mg·L-1 |
---|---|---|---|
19.448 | 苯酚 | 95.82 | 437.13 |
保留时间/min | 匹配项名称 | 质量分数/% | 相对浓度/mg·L-1 |
---|---|---|---|
19.448 | 苯酚 | 95.82 | 437.13 |
保留时间/min | 匹配项名称 | 质量分数/% | 相对浓度/mg·L-1 |
---|---|---|---|
11.532 | 乙二酸酯 | 0.17 | 0.77 |
15.730 | 邻苯二酚 | 0.14 | 0.63 |
18.416 | 琥珀酸盐 | 0.52 | 2.32 |
19.448 | 苯酚 | 89.36 | 397.81 |
22.330 | 5-羟基戊酸盐 | 0.33 | 1.47 |
保留时间/min | 匹配项名称 | 质量分数/% | 相对浓度/mg·L-1 |
---|---|---|---|
11.532 | 乙二酸酯 | 0.17 | 0.77 |
15.730 | 邻苯二酚 | 0.14 | 0.63 |
18.416 | 琥珀酸盐 | 0.52 | 2.32 |
19.448 | 苯酚 | 89.36 | 397.81 |
22.330 | 5-羟基戊酸盐 | 0.33 | 1.47 |
保留时间/min | 匹配项名称 | 质量分数/% | 相对浓度/mg·L-1 |
---|---|---|---|
11.532 | 乙二酸酯 | 0.39 | 0.93 |
18.416 | 琥珀酸盐 | 2.83 | 6.80 |
19.448 | 苯酚 | 54.03 | 129.77 |
22.330 | 5-羟基戊酸盐 | 3.44 | 8.27 |
保留时间/min | 匹配项名称 | 质量分数/% | 相对浓度/mg·L-1 |
---|---|---|---|
11.532 | 乙二酸酯 | 0.39 | 0.93 |
18.416 | 琥珀酸盐 | 2.83 | 6.80 |
19.448 | 苯酚 | 54.03 | 129.77 |
22.330 | 5-羟基戊酸盐 | 3.44 | 8.27 |
保留时间/min | 匹配项名称 | 质量分数/% | 相对浓度/mg·L-1 |
---|---|---|---|
7.780 | 2-氧代戊酸 | 0.91 | 0.28 |
11.532 | 乙二酸酯 | 2.69 | 0.82 |
15.330 | 丁酸 | 0.39 | 0.12 |
15.840 | 苯甲酸 | 3.30 | 1.01 |
18.416 | 琥珀酸盐 | 4.76 | 1.45 |
19.448 | 苯酚 | 3.60 | 1.10 |
20.230 | 富马酸 | 0.38 | 0.13 |
20.800 | 龙胆酸 | 1.35 | 0.41 |
22.330 | 5-羟基戊酸盐 | 3.78 | 1.16 |
27.390 | 甲酸 | 0.17 | 0.05 |
28.771 | 乙二酸 | 15.20 | 4.64 |
保留时间/min | 匹配项名称 | 质量分数/% | 相对浓度/mg·L-1 |
---|---|---|---|
7.780 | 2-氧代戊酸 | 0.91 | 0.28 |
11.532 | 乙二酸酯 | 2.69 | 0.82 |
15.330 | 丁酸 | 0.39 | 0.12 |
15.840 | 苯甲酸 | 3.30 | 1.01 |
18.416 | 琥珀酸盐 | 4.76 | 1.45 |
19.448 | 苯酚 | 3.60 | 1.10 |
20.230 | 富马酸 | 0.38 | 0.13 |
20.800 | 龙胆酸 | 1.35 | 0.41 |
22.330 | 5-羟基戊酸盐 | 3.78 | 1.16 |
27.390 | 甲酸 | 0.17 | 0.05 |
28.771 | 乙二酸 | 15.20 | 4.64 |
1 | 杨国辉, 褚夫奎, 李磊. 煤炭气化技术的比较与分析[J]. 山东化工, 2021, 50(23): 61-64. |
YANG Guohui, CHU Fukui, LI Lei. Comparison and analysis of coal gasification technology[J]. Shandong Chemical Industry, 2021, 50(23): 61-64. | |
2 | 李玉龙, 梁栋宇, 盛训超, 等. 煤炭地下气化残留物中微量元素分布及富集特性[J]. 化工进展, 2018, 37(4): 1590-1598. |
LI Yulong, LIANG Dongyu, SHENG Xunchao, et al. Distribution and enrichment characteristics of trace elements during underground coal gasification[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1590-1598. | |
3 | 张乐, 谌伦建, 苏毓, 等. 褐煤气化半焦对地下水有机污染的模拟脱除[J]. 化工进展, 2016, 35(10): 3337-3343. |
ZHANG Le, CHEN Lunjian, SU Yu, et al. Experimental studies on removal of organic contaminants in groundwater by UCG using semi-coke[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3337-3343. | |
4 | HEMIDOUCHE S, FAVIER L, AMRANE A, et al. Successful biodegradation of a refractory pharmaceutical compound by an indigenous phenol-tolerant pseudomonas aeruginosa strain[J]. Water, Air, & Soil Pollution, 2018, 229(3): 1-16. |
5 | ZHAO Tiantao, GAO Yanhui, YU Tiantian, et al. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: biochemical characterization and comparative genome analysis[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111709. |
6 | DAYANA PRIYADHARSHINI S, BAKTHAVATSALAM A K. A comparative study on growth and degradation behavior of C. pyrenoidosa on synthetic phenol and phenolic wastewater of a coal gasification plant[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103079. |
7 | BASHA K M, RAJENDRAN A, THANGAVELU V. Recent advances in the biodegradation of phenol: a review[J]. Asian Journal of Experimental Biological Science, 2010, 1(2): 219-234. |
8 | HE Qiangli, LIU Wenbin, YANG Haijun, et al. Isolation, identification of a phenol-degradaing strain and optimization for phenol degradation using response surface methodology[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 112-123. |
9 | ZHOU Le’an, YAN Xuejun, YAN Yuqing, et al. Electrode potential regulates phenol degradation pathways in oxygen-diffused microbial electrochemical system[J]. Chemical Engineering Journal, 2020, 381: 122663. |
10 | 杨丙衡, 安路阳, 张立涛, 等. 中间层为聚吡咯的复合电极深度处理焦化废水[J]. 化工进展, 2020, 39(10): 4256-4267. |
YANG Bingheng, AN Luyang, ZHANG Litao, et al. Treatment of coking wastewater with composite electrode with PPy as middle layer[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4256-4267. | |
11 | 王韬, 李鑫钢, 杜启云. 含酚废水治理技术研究进展[J]. 化工进展, 2008, 27(2): 231-235. |
WANG Tao, LI Xingang, DU Qiyun. Research progress of phenol-containing waste water disposal technique[J]. Chemical Industry and Engineering Progress, 2008, 27(2): 231-235. | |
12 | SAHOO S K, BHATTACHARYA S, SAHOO N K. Photocatalytic degradation of biological recalcitrant pollutants: a green chemistry approach[J]. Biointerface Research in Applied Chemistry, 2020, 10(2): 5048-5060. |
13 | DU Juanshan, SUN Bo, ZHANG Jing, et al. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate[J]. Environmental Science & Technology, 2012, 46(16): 8860-8867. |
14 | LI Haiping, CHENG Rongqing, LIU Zhiliang, et al. Waste control by waste: Fenton-like oxidation of phenol over Cu modified ZSM-5 from coal gangue[J]. Science of the Total Environment, 2019, 683: 638-647. |
15 | SUN Chen, CHEN Tong, HUANG Qunxing, et al. Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: performance and mechanism[J]. Chemical Engineering Journal, 2020, 380: 122519. |
16 | WANG Xinyue, SUN Yingnan, YANG Lu, et al. Novel photocatalytic system Fe-complex/TiO2 for efficient degradation of phenol and norfloxacin in water[J]. Science of the Total Environment, 2019, 656: 1010-1020. |
17 | RAJASULOCHANA P, PREETHY V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review[J]. Resource-Efficient Technologies, 2016, 2(4): 175-184. |
18 | PANIGRAHY N, BARIK M, SAHOO N K. Kinetics of phenol biodegradation by an indigenous Pseudomonas citronellolis NS1 isolated from coke oven wastewater[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24(3): 04020019. |
19 | SINGH U, ARORA N K, SACHAN P. Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri [J]. Brazilian Journal of Microbiology, 2018, 49(1): 38-44. |
20 | KE Qian, ZHANG Yunge, WU Xilin, et al. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers[J]. Journal of Environmental Management, 2018, 222: 185-189. |
21 | VAN DEXTER S, BOOPATHY R. Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite[J]. Environmental Science and Pollution Research International, 2019, 26(33): 34067-34072. |
22 | NAWAWI N M, AHMAD S A, SHUKOR M Y, et al. Statistical optimisation for improvement of phenol degradation by Rhodococcus sp. NAM 81[J]. Journal of Environmental Biology, 2016, 37(3): 443-451. |
23 | AZADI D, SHOJAEI H. Biodegradation of polycyclic aromatic hydrocarbons, phenol and sodium sulfate by Nocardia species isolated and characterized from Iranian ecosystems[J]. Scientific Reports, 2020, 10: 21860. |
24 | GOMES E SILVA N C, DE MACEDO A C, TELES PINHEIRO Á D, et al. Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103076. |
25 | DAN A, FUJII D, SODA S, et al. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands[J]. Science of the Total Environment, 2017, 578: 566-576. |
26 | 王哲, 骆逸飞, 郑春丽, 等. 淋溶条件下生物炭对矿区土壤中重金属迁移的影响[J]. 化工进展, 2020, 39(2): 738-746. |
WANG Zhe, LUO Yifei, ZHENG Chunli, et al. Effect of biochar on migration of heavy metals in mining soil under leaching conditions[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 738-746. | |
27 | MOORALITHARAN S, HANAFIAH Z M, MANAN T, et al. Optimization of mycoremediation treatment for the chemical oxygen demand (COD) and ammonia nitrogen (AN) removal from domestic effluent using wild-Serbian Ganoderma lucidum (WSGL)[J]. Environmental Science and Pollution Research International, 2021, 28(1): 32528-32544. |
28 | PANIGRAHY N, BARIK M, SAHOO R K, et al. Metabolic profile analysis and kinetics of p-cresol biodegradation by an indigenous Pseudomonas citronellolis NS1 isolated from coke oven wastewater[J]. International Biodeterioration & Biodegradation, 2020, 147: 104837. |
29 | 叶子兰, 吴生亮, 姜立春, 等. 苯酚降解菌Y_1的分离与鉴定[J]. 四川环境, 2022, 41(1): 24-29. |
YE Zilan, WU Shengliang, JIANG Lichun, et al. Isolation and identification of phenol degrading bacterium named Y_1[J]. Sichuan Environment, 2022, 41(1): 24-29. | |
30 | HASSANSHAHIAN M, ABARIAN M, BAHRAMZADEH K, et al. Isolation and identification of phenol-degrading bacteria in the industrial wastewater from the coal tar mine of Zarand in Iran[J]. Desalination and Water Treatment, 2019, 147: 125-134. |
31 | 李从强, 杨明坤, 付佳, 等. 煤炭地下气化废水的微生物修复研究[J]. 河南理工大学学报(自然科学版), 2022, 41(6): 1-9. |
LI Congqiang, YANG Mingkun, FU Jia, et al. Microbial remediation of underground coal gasification wastewater[J]. Journal of Polytechnic University (Natural Science), 2022, 41(6): 1-9. |
[1] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[2] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[3] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[4] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[5] | LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468. |
[6] | WU Zhongjie, XIE Lianke, WANG Jinghui, HUANG Renliang. Preparation of hierarchical copper hydroxyl nitrate nanozyme for degradation of phenolic pollutants [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 497-505. |
[7] | ZHU Hao, LIU Hanfei, JI Yufan, LI Shuangtao, HUANG Yiping, GAO Yuan, WEI Zhenhao, ZHU Kai, HAN Weiqing, WEI Kajia. Research advance and mechanism analysis of catalytic ozonation of phenolic compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 545-555. |
[8] | FU Chunlong, WANG Songjiang, LI Guozhi. Research progress on combustion technology of coal gasification fine slag [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 516-523. |
[9] | LIU Dachen, DU Minghui, WANG Heng. Bromination modification of phenolic hydroxyl sites of crosslinked teroctyl phenolic resin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 382-388. |
[10] | YANG Liu, WANG Mingwei, ZHANG Yaobin. Magnetite-loaded biochar for enhanced anaerobic microbial treatment of 2,4-dichlorophenol wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5065-5073. |
[11] | YI Xuenong, LI Jingmei, GAO Yuqiong. Oxidative degradation of naproxen in water by UV-Fe(Ⅵ) process [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4562-4570. |
[12] | GUO Rui, LI Ping’an, ZHAO Yunfei. Synthesis and performance of silicon modified BPA-PA phenolic epoxy resin conductive adhesive [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4473-4480. |
[13] | GUO Fanhui, WU Jianjun, ZHANG Haijun, GUO Yang, LIU Hu, ZHANG Yixin. Coal gasification fine slag vacuum dewatering by ceramic membrane and numerical simulation [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4047-4056. |
[14] | CAI Sichao, ZHOU Jing, DU Jinze, LI Fangzhou, LI Yuansen, HE Lin, LI Xingang, WANG Chengyang. Process analysis of resource utilization of phenol-based distillation residue from coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3360-3371. |
[15] | LYU Feiyong, CHU Mo, YI Haoran, HAO Yan, YANG Yanbo, SHI Xu, SUN Xingbo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2372-2378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |