Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 682-689.DOI: 10.16085/j.issn.1000-6613.2021-0505
• Industrial catalysis • Previous Articles Next Articles
ZHANG Jing1,2(), MA Huiling1, ZENG Defu1, YAO Xiaoyi1
Received:
2021-03-14
Revised:
2021-06-25
Online:
2022-02-23
Published:
2022-02-05
Contact:
ZHANG Jing
通讯作者:
张静
作者简介:
张静(1985—),女,博士,副教授,博士生导师,研究方向为生物质能源、水和废水的物化处理。E-mail:基金资助:
CLC Number:
ZHANG Jing, MA Huiling, ZENG Defu, YAO Xiaoyi. Deactivation and regeneration of heterogeneous catalysts in green diesel production by hydrothermal process[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 682-689.
张静, 马慧玲, 曾得福, 姚潇毅. 水热催化制备绿色柴油工艺中催化剂的失活与再生[J]. 化工进展, 2022, 41(2): 682-689.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0505
1 | JAHIRUL M, RASUL M, CHOWDHURY A, et al. Biofuels production through biomass pyrolysis—A technological review[J]. Energies, 2012, 5(12): 4952-5001. |
2 | 傅杰. 高温液态水中的脱羧反应[D]. 杭州: 浙江大学, 2010. |
FU J. Studies on decarboxylation reactions in high temperature liquid water[D]. Hangzhou: Zhejiang University, 2010. | |
3 | ARUN N, SHARMA R V, DALAI A K. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: strategies for catalyst design and development[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 240-255. |
4 | TSODIKOV M V, CHISTYAKOV A V, GUBANOV M A, et al. Selective deoxygenation of vegetable oils in the presence of Pt-Sn/Al2O3 catalyst[J]. Russian Chemical Bulletin, 2015, 64(9): 2062-2068. |
5 | HONGLOI N, PRAPAINAINAR P, SEUBSAI A, et al. Nickel catalyst with different supports for green diesel production[J]. Energy, 2019, 182: 306-320. |
6 | DOUVARTZIDES S L, CHARISIOU N D, PAPAGERIDIS K N, et al. Green diesel: biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines[J]. Energies, 2019, 12(5): 809. |
7 | 王霏, 徐俊明, 蒋剑春, 等. 油脂加氢制备生物柴油用催化剂的研究进展[J]. 材料导报, 2018, 32(5): 765-771. |
WANG F, XU J M, JIANG J C, et al. Advances in catalysts applied to bio-diesel production from oil hydrotreatment[J]. Materials Reports, 2018, 32(5): 765-771. | |
8 | DUAN P, XU Y, WANG F, et al. Catalytic upgrading of pretreated algal bio-oil over zeolite catalysts in supercritical water[J]. Biochemical Engineering Journal, 2016, 116: 105-112. |
9 | ZHANG J, HUO X, LI Y, et al. Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14400-14410. |
10 | VARDON D R, SHARMA B K, JARAMILLO H, et al. Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production[J]. Green Chemistry, 2014, 16(3): 152-157. |
11 | WATANABE M, IIDA T, INOMATA H. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water[J]. Energy Conversion and Management, 2006, 47(18/19): 3344-3350. |
12 | 王治斌, 孙来芝, 陈雷, 等. 生物油水蒸气催化重整制氢研究进展[J]. 化工进展, 2021, 40(1): 151-163. |
WANG Z B, SUN L Z, CHEN L, et al. Progress in hydrogen production by steam catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 151-163. | |
13 | FU J, LU X, SAVAGE P E. Catalytic hydrothermal deoxygenation of palmitic acid[J]. Energy & Environmental Science, 2010, 3(3): 311-317. |
14 | SIMS R E H, MABEE W, SADDLER J N, et al. An overview of second generation biofuel technologies[J]. Bioresource Technology, 2010, 101(6): 1570-1580. |
15 | XU D, LIN G, GUO S, et al. Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: a critical review[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 103-118. |
16 | HOSSAIN M Z, JHAWAR A K, CHOWDHURY M B I, et al. Deactivation and regeneration studies of activated carbon during continuous decarboxylation of oleic acid in subcritical water[J]. Fuel, 2018, 231: 253-263. |
17 | CHEN J, XU Q. Hydrodeoxygenation of biodiesel-related fatty acid methyl esters to diesel-range alkanes over zeolite-supported ruthenium catalysts[J]. Catalysis Science & Technology, 2016, 6(19): 7239-7251. |
18 | CHANG Z F, DUAN P G, XU Y P. Catalytic hydropyrolysis of microalgae influence of operating variables[J]. Bioresource Technology, 2015, 184: 349-354. |
19 | HOLLAK S A W, ARIËNS M A, DE JONG K P, et al. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming[J]. ChemSusChem, 2014, 7: 1057-1060. |
20 | YANG C Y, NIE R F, FU J, et al. Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil[J]. Bioresource Technology, 2013, 146: 569-573. |
21 | HOSSAIN M Z, CHOWDHURY M B I, JHAWAR A K, et al. Continuous hydrothermal decarboxylation of fatty acids and their derivatives into liquid hydrocarbons using Mo/Al2O3 catalyst[J]. ACS Omega, 2018, 3(6): 7046-7060. |
22 | MIAO C, MARIN-FLORES O, DAVIDSON S D, et al. Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst[J]. Fuel, 2016, 166: 302-308. |
23 | MIAO C, MARIN-FLORES O, DONG T, et al. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4521-4530. |
24 | MURATA K, LIU Y Y, INABA M, et al. Production of synthetic diesel by hydrotreatment of Jatropha oils using Pt-Re/H-ZSM-5 catalyst[J]. Energy & Fuels, 2010, 24(4): 2404-2409. |
25 | ZHANG Z H, YANG Q W, CHEN H, et al. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier[J]. Green Chemistry, 2018, 20(1): 197-205. |
26 | 于琪, 张祖浩, 尹昭森, 等. Cu-Ce/γ-Al2O3对硬脂酸催化水热脱氧产生烷烃的效果[J]. 色谱, 2019, 4(37): 454-461. |
YU Q, ZHANG Z H, YIN Z S, et al. Effect of Cu-Ce/γ-Al2O3 catalyst on bio-oil production by hydrothermal deoxygenation of stearic acid[J]. Chinese Journal of Chromatography, 2019, 4(37): 454-461. | |
27 | BARTHOLOMEW C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212: 17-60. |
28 | WU K, WU Y, CHEN Y, et al. Heterogeneous catalytic conversion of biobased chemicals into liquid fuels in the aqueous phase[J]. ChemSusChem, 2016, 9(12): 1355-1385. |
29 | RUOFF R S, LORENTS D C, CHAN B, et al. Single crystal metals encapsulated in carbon nanoparticles[J]. Science, 2010, 259(5093): 346-348. |
30 | YEH T, LINIC S, SAVAGE P E. Deactivation of Pt catalysts during hydrothermal decarboxylation of butyric acid[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2399-2406. |
31 | LANGE J. Renewable feedstocks: the problem of catalyst deactivation and its mitigation[J]. Angewandte Chemie International Edition, 2015, 54: 13186-13197. |
32 | PHAM T N, SHI D, SOOKNOI T, et al. Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts[J]. Journal of Catalysis, 2012, 295: 169-178. |
33 | KIM S, TSANG Y F, KWON E E, et al. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks[J]. Korean Journal Chemical Engineering, 2019, 36(1): 1-11. |
34 | FU J, LU X Y, SAVAGE P E. Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C[J]. ChemSusChem, 2011, 4(4): 481-486. |
35 | XU G Y, ZHANG Y, FU Y, et al. Efficient hydrogenation of various renewable oils over Ru-HAP catalyst in water[J]. ACS Catalysis, 2017, 7(2): 1158-1169. |
36 | JIN M, CHOI M. Hydrothermal deoxygenation of triglycerides over carbon-supported bimetallic PtRe catalysts without an external hydrogen source[J]. Molecular Catalysis, 2019, 474: 110419. |
37 | HWANG K R, CHOI I H, CHOI H Y, et al. Bio fuel production from crude Jatropha oil; addition effectt of formic acid as an in-situ hydrogen source[J]. Fuel, 2016, 174: 107-113. |
38 | FU J, YANG C Y, WU J H, et al. Direct production of aviation fuels from microalgae lipids in water[J]. Fuel, 2015, 139: 678-683. |
39 | TIAN Q R, ZHANG Z Z, ZHOU F, et al. Role of solvent in catalytic conversion of oleic acid to aviation biofuels[J]. Energy & Fuels, 2017, 31(6): 6163-6172. |
40 | IDESH S, KUDO S, NORINAGA K, et al. Catalytic hydrothermal reforming of Jatropha oil in subcritical water for the production of green fuels: characteristics of reactions over Pt and Ni catalysts[J]. Energy & Fuels, 2013, 27(8): 4796-4803. |
41 | EDEH I, OVERTON T, BOWRA S. Renewable diesel production by hydrothermal decarboxylation of fatty acids over platinum on carbon catalyst[J]. Biofuels, 2021, 12(8): 945-952. |
42 | EDEH I, OVERTON T, BOWRA S. Catalytic hydrothermal deoxygenation of the lipid fraction of activated sludge[J]. Biofuels, 2021, 12(8): 925-929. |
43 | XIONG H F, PHAM H N, DATYE A K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables[J]. Green Chemistry, 2014, 16: 4627-4643. |
44 | 张成. 硬脂酸催化脱氧制备碳氢化合物的实验研究[D]. 昆明: 云南师范大学, 2013. |
ZHANG C. Research of hydrocarbon production from catalytic deoxygenation of stearic acid[D]. Kunming: Yunnan Normal University, 2013. | |
45 | DUAN P G, BAI X J, XU Y P, et al. Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water[J]. Fuel, 2013, 109: 225-233. |
46 | ZHANG Z Z, CHEN H, WANG C X, et al. Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor[J]. Fuel, 2018, 230: 211-217. |
47 | MO N, SAVAGE P E. Hydrothermal catalytic cracking of fatty acids with HZSM-5[J]. ACS Sustainable Chemistry & Engineering, 2013, 2(1): 88-94. |
48 | ARGYLE M D, BARTHOLOMEW C H. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269. |
[1] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[2] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[3] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[4] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[5] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[6] | HUANG Qizhong, LIU Bing, MA Hongpeng, LYU Wenjie. Methanol to olefin wastewater treatment based on a novel microchannel separation technology [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 669-676. |
[7] | CAO Min, MAO Yujiao, WANG Qianqian, LI Sha, YAN Xiaoliang. Sintering mechanism and sintering-resistant strategies for metal-based catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 744-755. |
[8] | LI Naizhen, SUN Ruijie, QIN Zhifeng, MIAO Maoqian, WU Qiongxiao, CHANG Liping, SUN Pengcheng, ZENG Jian, LIU Yi. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 783-793. |
[9] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
[10] | CUI Ruili, CHENG Tao, SONG Junnan, NIU Guifeng, LIU Yuanyuan, ZHANG Tao, ZHAO Yusheng, WANG Luhai. Regeneration characterization and performance evaluation of the fixed-bed residue hydrotreating catalyst for microcarbon reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5200-5204. |
[11] | ZHANG Jie, WANG Xudong, YANG Yifei, REN Yue, CHEN Licheng. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372. |
[12] | YANG Xin, XU Hong, HU Weixun, LIU Hongzuo, LONG Quanzhi, ZHU Liye. Regeneration of waste lubricant oil by supercritical carbon dioxide extraction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5399-5405. |
[13] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[14] | LI Zhaoming, SHEN Boxiong, FENG Shuo, BIAN Yao. Effect of structure and morphology on manganese-based catalysts’ sulfur and water resistance [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 226-235. |
[15] | LI Pan, WANG Biao, XU Junhao, WANG Xianhua, HU Junhao, SONG Jiande, BAI Jing, CHANG Chun. Research progress on carbon deposition of catalysts for biomass pyrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 236-246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |