Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6206-6214.DOI: 10.16085/j.issn.1000-6613.2023-1919
• Industrial catalysis • Previous Articles
GAO Zihan1(), YANG Runnong1, WANG Zhaoying1, SONG Yanhai2, QIN Bin3, YU Lin1()
Received:
2023-11-01
Revised:
2024-03-12
Online:
2024-12-07
Published:
2024-11-15
Contact:
YU Lin
高梓寒1(), 杨润农1, 王钊颖1, 宋燕海2, 覃斌3, 余林1()
通讯作者:
余林
作者简介:
高梓寒(1996—),男,硕士研究生,研究方向为SCR脱硝催化剂。E-mail:706479968@qq.com。
基金资助:
CLC Number:
GAO Zihan, YANG Runnong, WANG Zhaoying, SONG Yanhai, QIN Bin, YU Lin. Influence of zirconium modified carriers on the NH3-SCR performance of manganese-cerium composite catalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6206-6214.
高梓寒, 杨润农, 王钊颖, 宋燕海, 覃斌, 余林. 锆修饰载体对锰铈复合催化剂NH3-SCR性能的影响[J]. 化工进展, 2024, 43(11): 6206-6214.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1919
催化剂名称 | T50/℃ | T90/℃ | 最高NO转化率/% | 工作温度窗口/℃ |
---|---|---|---|---|
Ce | — | — | 35.7 | — |
Ce0.9Zr0.1 | — | — | 48.3 | — |
Ce0.8Zr0.2 | 364.3 | — | 53.4 | — |
Ce0.7Zr0.3 | — | — | 48.8 | — |
Mn/Ce | 104.0 | 150.4 | 98.0 | 150.4~353.5 |
Mn/Ce0.9Zr0.1 | 102.7 | 132.3 | 99.1 | 132.3~368.1 |
Mn/Ce0.8Zr0.2 | 100.2 | 130.2 | 100.0 | 130.2~375.7 |
Mn/Ce0.7Zr0.3 | 112 | 141.2 | 99.8 | 141.2~377.2 |
催化剂名称 | T50/℃ | T90/℃ | 最高NO转化率/% | 工作温度窗口/℃ |
---|---|---|---|---|
Ce | — | — | 35.7 | — |
Ce0.9Zr0.1 | — | — | 48.3 | — |
Ce0.8Zr0.2 | 364.3 | — | 53.4 | — |
Ce0.7Zr0.3 | — | — | 48.8 | — |
Mn/Ce | 104.0 | 150.4 | 98.0 | 150.4~353.5 |
Mn/Ce0.9Zr0.1 | 102.7 | 132.3 | 99.1 | 132.3~368.1 |
Mn/Ce0.8Zr0.2 | 100.2 | 130.2 | 100.0 | 130.2~375.7 |
Mn/Ce0.7Zr0.3 | 112 | 141.2 | 99.8 | 141.2~377.2 |
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
Ce | 117.6 | 0.196 | 3.057 |
Ce0.8Zr0.2 | 125.7 | 0.183 | 3.057 |
Mn/Ce | 106.1 | 0.192 | 3.063 |
Mn/Ce0.8Zr0.2 | 104.7 | 0.147 | 3.063 |
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
Ce | 117.6 | 0.196 | 3.057 |
Ce0.8Zr0.2 | 125.7 | 0.183 | 3.057 |
Mn/Ce | 106.1 | 0.192 | 3.063 |
Mn/Ce0.8Zr0.2 | 104.7 | 0.147 | 3.063 |
催化剂 | H总/mmol·g-1 | H低温/mmol·g-1 | 相对酸性位点总量 |
---|---|---|---|
Ce | 1.202 | 0.639 | 4.48 |
Ce0.8Zr0.2 | 1.447 | 0.848 | 4.97 |
Mn/Ce | 1.564 | 1.095 | 4.94 |
Mn/Ce0.8Zr0.2 | 1.776 | 1.211 | 5.12 |
催化剂 | H总/mmol·g-1 | H低温/mmol·g-1 | 相对酸性位点总量 |
---|---|---|---|
Ce | 1.202 | 0.639 | 4.48 |
Ce0.8Zr0.2 | 1.447 | 0.848 | 4.97 |
Mn/Ce | 1.564 | 1.095 | 4.94 |
Mn/Ce0.8Zr0.2 | 1.776 | 1.211 | 5.12 |
催化剂 | Ce3+/(Ce3++Ce4+) | Mn4+/(Mn3++Mn4+) | OA/(OA+OL) |
---|---|---|---|
Ce | 0.179 | — | 0.225 |
Ce0.8Zr0.2 | 0.204 | — | 0.264 |
Mn/Ce | 0.224 | 0.602 | 0.167 |
Mn/ Ce0.8Zr0.2 | 0.184 | 0.658 | 0.174 |
催化剂 | Ce3+/(Ce3++Ce4+) | Mn4+/(Mn3++Mn4+) | OA/(OA+OL) |
---|---|---|---|
Ce | 0.179 | — | 0.225 |
Ce0.8Zr0.2 | 0.204 | — | 0.264 |
Mn/Ce | 0.224 | 0.602 | 0.167 |
Mn/ Ce0.8Zr0.2 | 0.184 | 0.658 | 0.174 |
1 | BOHON Myles D, RASHIDI Mariam J AL, Mani SARATHY S, et al. Experiments and simulations of NO x formation in the combustion of hydroxylated fuels[J]. Combustion and Flame, 2015, 162(6): 2322-2336. |
2 | LIU Zhiming, LI Junhua, Seong Ihl WOO. Recent advances in the selective catalytic reduction of NO x by hydrogen in the presence of oxygen[J]. Energy & Environmental Science, 2012, 5(10): 8799-8814. |
3 | 王艳, 李兆强, 张丞, 等. CeO2含量对柴油机商用稀土SCR催化剂脱硝性能的影响[J]. 化工进展, 2020, 39(7): 2662-2669. |
WANG Yan, LI Zhaoqiang, ZHANG Cheng, et al. Influence of CeO2 contents on the SCR performance of commercial rare earth catalysts[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2662-2669. | |
4 | DEKA Upakul, Ines LEZCANO-GONZALEZ, WECKHUYSEN Bert M, et al. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NO x [J]. ACS Catalysis, 2013, 3(3): 413-427. |
5 | GRANGER Pascal, PARVULESCU Vasile I. Catalytic NO x abatement systems for mobile sources: From three-way to lean burn after-treatment technologies[J]. Chemical Reviews, 2011, 111(5): 3155-3207. |
6 | BUSCA Guido, LIETTI Luca, RAMIS Gianguido, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36. |
7 | KOMPIO Patrick G W A, Angelika BRÜCKNER, HIPLER Frank, et al. A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2 catalysts for the selective reduction of NO with NH3 [J]. Journal of Catalysis, 2012, 286: 237-247. |
8 | ZHANG Jie, HUANG Zhiwei, DU Yueyao, et al. Atomic-scale insights into the nature of active sites in Fe2O3-supported submonolayer WO3 catalysts for selective catalytic reduction of NO with NH3 [J]. Chemical Engineering Journal, 2020, 381: 122668. |
9 | BRANDENBERGER Sandro, Oliver KRÖCHER, TISSLER Arno, et al. The state of the art in selective catalytic reduction of NO x by ammonia using metal-exchanged zeolite catalysts[J]. Catalysis Reviews, 2008, 50(4): 492-531. |
10 | ROY Sounak, BAIKER Alfons. NO x storage-reduction catalysis: From mechanism and materials properties to storage-reduction performance[J]. Chemical Reviews, 2009, 109(9): 4054-4091. |
11 | FANG Xue, LIU Yongjun, CEN Wanglai, et al. Birnessite as a highly efficient catalyst for low-temperature NH3-SCR: The vital role of surface oxygen vacancies[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14606-14615. |
12 | MENG Dongmei, ZHAN Wangcheng, GUO Yun, et al. A highly effective catalyst of Sm-MnO x for the NH3-SCR of NO x at low temperature: Promotional role of Sm and its catalytic performance[J]. ACS Catalysis, 2015, 5(10): 5973-5983. |
13 | TANG Xingfu, LI Junhua, SUN Liang, et al. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3 [J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 156-162. |
14 | GAO Ge, SHI Jianwen, LIU Chang, et al. Mn/CeO2 catalysts for SCR of NO x with NH3: Comparative study on the effect of supports on low-temperature catalytic activity[J]. Applied Surface Science, 2017, 411: 338-346. |
15 | SHEN Boxiong, WANG Yinyin, WANG Fumei, et al. The effect of Ce-Zr on NH3-SCR activity over MnO x (0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chemical Engineering Journal, 2014, 236: 171-180. |
16 | DING Shipeng, LIU Fudong, SHI Xiaoyan, et al. Significant promotion effect of Mo additive on a novel Ce-Zr mixed oxide catalyst for the selective catalytic reduction of NO x with NH3 [J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9497-9506. |
17 | Fabien CAN, BERLAND Sébastien, ROYER Sébastien, et al. Composition-dependent performance of Ce x Zr1– x O2 mixed-oxide-supported WO3 catalysts for the NO x storage reduction-selective catalytic reduction coupled process[J]. ACS Catalysis, 2013, 3(6): 1120-1132. |
18 | MA Lei, WANG Dingsheng, LI Junhua, et al. Ag/CeO2 nanospheres: Efficient catalysts for formaldehyde oxidation[J]. Applied Catalysis B: Environmental, 2014, 148/149: 36-43. |
19 | LIU Zhiming, YI Yang, ZHANG Shaoxuan, et al. Selective catalytic reduction of NO x with NH3 over Mn-Ce mixed oxide catalyst at low temperatures[J]. Catalysis Today, 2013, 216: 76-81. |
20 | DANIEL Marlène, LORIDANT Stéphane. Probing reoxidation sites by in situ Raman spectroscopy: Differences between reduced CeO2 and Pt/CeO2 [J]. Journal of Raman Spectroscopy, 2012, 43(9): 1312-1319. |
21 | SHANG Danhong, CAI Wei, ZHAO Wei, et al. Catalytic oxidation of NO to NO2 over Co-Ce-Zr solid solutions: Enhanced performance of Ce-Zr solid solution by Co[J]. Catalysis Letters, 2014, 144(3): 538-544. |
22 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
23 | WU Xiaomin, YU Xiaolong, HUANG Zhiwei, et al. MnOx-decorated VO x /CeO2 catalysts with preferentially exposed {110} facets for selective catalytic reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2020, 268: 118419. |
24 | SHEN Boxiong, YAO Yan, CHEN Jianhong, et al. Alkali metal deactivation of Mn-CeO x /Zr-delaminated-clay for the low-temperature selective catalytic reduction of NO x with NH3 [J]. Microporous and Mesoporous Materials, 2013, 180: 262-269. |
25 | DELIMARIS Dimitrios, IOANNIDES Theophilos. VOC oxidation over MnO x -CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 303-312. |
26 | LI Hongfeng, LU Guanzhong, DAI Qiguang, et al. Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres[J]. Applied Catalysis B: Environmental, 2011, 102(3/4): 475-483. |
27 | ZHANG Dengsong, ZHANG Lei, SHI Liyi, et al. In situ supported MnO x -CeO x on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3 [J]. Nanoscale, 2013, 5(3): 1127-1136. |
28 | TAN Hongyi, WANG Jin, YU Shuzhen, et al. Support morphology-dependent catalytic activity of Pd/CeO₂ for formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(14): 8675-8682. |
29 | YOU Xiaochen, SHENG Zhongyi, YU Danqing, et al. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnO x -CeO2 oxides for NH3-SCR at low temperature[J]. Applied Surface Science, 2017, 423: 845-854. |
30 | PENG Yue, WANG Dong, LI Bing, et al. Impacts of Pb and SO2 poisoning on CeO2-WO3/TiO2-SiO2 SCR catalyst[J]. Environmental Science & Technology, 2017, 51(20): 11943-11949. |
31 | KONG Jiejing, XIANG Ziwei, LI Guiying, et al. Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs[J]. Applied Catalysis B: Environmental, 2020, 269: 118755. |
32 | ZHANG Guodong, HAN Weiliang, DONG Fang, et al. One pot synthesis of a highly efficient mesoporous ceria-titanium catalyst for selective catalytic reduction of NO[J]. RSC Advances, 2016, 6(80): 76556-76567. |
33 | YU Xiaolong, WU Xiaomin, CHEN Ziyi, et al. Oxygen vacancy defect engineering in Mn-doped CeO2 nanostructures for nitrogen oxides emission abatement[J]. Molecular Catalysis, 2019, 476: 110512. |
34 | LI Guangfeng, WANG Qiuyan, ZHAO Bo, et al. Effect of iron doping into CeO2-ZrO2 on the properties and catalytic behaviour of Pd-only three-way catalyst for automotive emission control[J]. Journal of Hazardous Materials, 2011, 186(1): 911-920. |
35 | LIU Xiangwen, ZHOU Kebin, WANG Lei, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. Journal of the American Chemical Society, 2009, 131(9): 3140-3141. |
36 | ZHOU Aiyi, YU Danqing, YANG Liu, et al. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping[J]. Applied Surface Science, 2016, 378: 167-173. |
37 | GENUINO Homer C, MENG Yongtao, HORVATH Dayton T, et al. Enhancement of catalytic activities of octahedral molecular sieve manganese oxide for total and preferential CO oxidation through vanadium ion framework substitution[J]. ChemCatChem, 2013, 5(8): 2306-2317. |
38 | SUN Liang, CAO Qingqing, HU Bingqing, et al. Synthesis, characterization and catalytic activities of vanadium-cryptomelane manganese oxides in low-temperature NO reduction with NH3 [J]. Applied Catalysis A: General, 2011, 393(1/2): 323-330. |
39 | DU Haiwei, WANG Yuan, ARANDIYAN Hamidreza, et al. Design and synthesis of CeO2 nanowire/MnO2 nanosheet heterogeneous structure for enhanced catalytic properties[J]. Materials Today Communications, 2017, 11: 103-111. |
40 | TANG Xingfu, LI Yonggang, CHEN Junli, et al. Synthesis, characterization, and catalytic application of titanium-cryptomelane nanorods/fibers[J]. Microporous and Mesoporous Materials, 2007, 103(1/2/3): 250-256. |
41 | LI Weiman, LIU Haidi, CHEN Yunfa. Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst[J]. Frontiers of Environmental Science & Engineering, 2017, 11(2): 6. |
42 | ZUO Jianliang, CHEN Zhihang, WANG Furong, et al. Low-temperature selective catalytic reduction of NO x with NH3 over novel Mn-Zr mixed oxide catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2647-2655. |
[1] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
[2] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[3] | ZHOU Hao, WANG Xurui, ZHAO Huishuang, WEN Nini, SU Yaxin. Selective catalytic reduction of nitric oxide with propylene over CuCe-SAPO-34 catalysts under diesel engine exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3093-3099. |
[4] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[5] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[6] | MA Jingwen, NIU Jiayu, LI Xiufen. Promotion technology of aerobic compost ripening [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2744-2750. |
[7] | ZHAO Qiaonan, LIU Xuemin, LIU Feng, XU Hongtao, LIU Zhaohai, LIAO Xiaowei. Numerical on emissions mechanism of nitrogen oxides in gas-fired boilers blended with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5637-5647. |
[8] | YANG Xigang, CHEN Guoqing, HUANG Linbin, GU Shijun, LI Changsong, ZHANG Yong, JIN Baosheng. Industrial experiment on the effect of SNCR using urea as the reducing agent on the operation of large capacity power station pulverized coal boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3573-3581. |
[9] | LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876. |
[10] | HAN Delin, LI Dan, WANG Tiantian, ZHANG Hai, ZHANG Yang, WANG Suilin. Emission characteristics of swirl premixed combustion stabilized using a displacing bluff body [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2915-2923. |
[11] | WANG Xinyu, HUANG Yaji, XU Ligang, LI Zhiyuan, LI Si, LIU Xiaodong. Numerical simulation on regulating secondary air in same layer to alleviate high temperature corrosion of dual tangential boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2292-2300. |
[12] | YANG Jingrui, WANG Ying, CHEN Hu, LYU Yongkang. Effects of O2 concentration on adjusting NO x oxidation ratio cooperated with CABR system denitration performance and microbial community structure [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6139-6148. |
[13] | TAN Xiao, QI Suitao, ZHOU Yiming, SHI Libin, CHENG Guangxu, YI Chunhai, YANG Bolun. Direct catalytic reduction of NO by bimetallic ferromanganese catalyst under non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5850-5857. |
[14] | YIN Zijun, SU Sheng, WANG Zhonghui, WANG Lele, AN Xiaoxue, ZHAO Zhigang, CHEN Yifeng, LIU Tao, WANG Yi, HU Song, XIANG Jun. Research progress on the characteristics and control methods of SO3 and NH4HSO4 formation in coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2328-2337. |
[15] | Yuehua LIU, Ju SHANGGUAN, Shoujun LIU, Song YANG, Wenguang DU. Nitrogen migration regarding the addition of iron-Ni composite additives during coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 164-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |