Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 6139-6148.DOI: 10.16085/j.issn.1000-6613.2022-0152
• Resources and environmental engineering • Previous Articles Next Articles
YANG Jingrui1(), WANG Ying2, CHEN Hu3, LYU Yongkang2()
Received:
2022-01-22
Revised:
2022-04-09
Online:
2022-11-28
Published:
2022-11-25
Contact:
LYU Yongkang
通讯作者:
吕永康
作者简介:
杨景瑞(1992—),女,讲师,研究方向为大气污染物及污水治理。E-mail:yangjingrui0809@126.com。
基金资助:
CLC Number:
YANG Jingrui, WANG Ying, CHEN Hu, LYU Yongkang. Effects of O2 concentration on adjusting NO x oxidation ratio cooperated with CABR system denitration performance and microbial community structure[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6139-6148.
杨景瑞, 王莹, 陈虎, 吕永康. 氧浓度对调节NO x 氧化度协同CABR法脱硝性能及菌群结构的影响[J]. 化工进展, 2022, 41(11): 6139-6148.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0152
阶段 | 时间/d | 水力停留时间 /h | 氧体积分数 /% | 气流量 /L·min-1 | 入口硝氮浓度 /mg·L-1 | 入口亚硝氮浓度 /mg·L-1 | 入口NO浓度 /μL·L-1 | 入口NO2浓度 /μL·L-1 | NaHCO3浓度 /mol·L-1 |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | 1~7 | 24 | 5 | 1 | 100 | 0 | 0 | 0 | 0 |
Ⅱ | 8~9 | 24 | 5 | 1 | 100 | 0 | 0 | 0 | 0 |
Ⅲ | 10~11 | 24 | 5 | 1 | 75 | 25 | 0 | 0 | 0 |
Ⅳ | 12~13 | 24 | 5 | 1 | 50 | 50 | 0 | 0 | 0 |
Ⅴ | 14~15 | 24 | 5 | 1 | 25 | 75 | 0 | 0 | 0 |
Ⅵ | 16~17 | 24 | 5 | 1 | 0 | 100 | 0 | 0 | 0 |
Ⅶ | 18~22 | — | 5 | 1 | 0 | 0 | 250 | 250 | 0.1 |
阶段 | 时间/d | 水力停留时间 /h | 氧体积分数 /% | 气流量 /L·min-1 | 入口硝氮浓度 /mg·L-1 | 入口亚硝氮浓度 /mg·L-1 | 入口NO浓度 /μL·L-1 | 入口NO2浓度 /μL·L-1 | NaHCO3浓度 /mol·L-1 |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | 1~7 | 24 | 5 | 1 | 100 | 0 | 0 | 0 | 0 |
Ⅱ | 8~9 | 24 | 5 | 1 | 100 | 0 | 0 | 0 | 0 |
Ⅲ | 10~11 | 24 | 5 | 1 | 75 | 25 | 0 | 0 | 0 |
Ⅳ | 12~13 | 24 | 5 | 1 | 50 | 50 | 0 | 0 | 0 |
Ⅴ | 14~15 | 24 | 5 | 1 | 25 | 75 | 0 | 0 | 0 |
Ⅵ | 16~17 | 24 | 5 | 1 | 0 | 100 | 0 | 0 | 0 |
Ⅶ | 18~22 | — | 5 | 1 | 0 | 0 | 250 | 250 | 0.1 |
样本 | Reads | OTU | Shannon | ACE | Chao1 | Coverage | Simpson |
---|---|---|---|---|---|---|---|
S1 | 40385 | 244 | 2.43 | 615.86 | 595.05 | 1.00 | 0.16 |
S2 | 37765 | 227 | 2.02 | 975.77 | 705.12 | 1.00 | 0.23 |
S3 | 69407 | 271 | 2.31 | 1068.33 | 713.27 | 1.00 | 0.18 |
S4 | 82718 | 432 | 2.35 | 3172.34 | 1719.19 | 1.00 | 0.17 |
S5 | 120482 | 630 | 2.27 | 4035.95 | 2152.5 | 1.00 | 0.22 |
样本 | Reads | OTU | Shannon | ACE | Chao1 | Coverage | Simpson |
---|---|---|---|---|---|---|---|
S1 | 40385 | 244 | 2.43 | 615.86 | 595.05 | 1.00 | 0.16 |
S2 | 37765 | 227 | 2.02 | 975.77 | 705.12 | 1.00 | 0.23 |
S3 | 69407 | 271 | 2.31 | 1068.33 | 713.27 | 1.00 | 0.18 |
S4 | 82718 | 432 | 2.35 | 3172.34 | 1719.19 | 1.00 | 0.17 |
S5 | 120482 | 630 | 2.27 | 4035.95 | 2152.5 | 1.00 | 0.22 |
1 | ZHOU Zuoming, JING Guohua, ZHOU Qi. Enhanced NO x removal from flue gas by an integrated process of chemical absorption coupled with two-stage biological reduction using immobilized microorganisms[J]. Process Safety and Environmental Protection, 2013, 91(4): 325-332. |
2 | OLIVIER J G J, BOUWMAN A F, VAN DER HOEK K W, et al. Global air emission inventories for anthropogenic sources of NO x, NH3 and N2O in 1990[J]. Environmental Pollution, 1998, 102(1): 135-148. |
3 | 仝明. 臭氧氧化-钙法吸收工艺对烟气的同步脱硫脱硝[J]. 化工环保, 2017, 37(2): 223-226. |
TONG Ming. Simultaneous desulfurization and denitration of flue gas by ozone oxidation-calcium absorption process[J]. Environmental Protection of Chemical Industry, 2017, 37(2): 223-226. | |
4 | 徐凯杰, 文静, 刘志华, 等. ClO2气相氧化联合CaCO3浆液吸收同时脱硫脱硝试验研究[J]. 环境污染与防治, 2017, 39(5): 504-509. |
XU Kaijie, WEN Jing, LIU Zhihua, et al. Experimental research of simultaneous desulfurization and denitrification by ClO2 gas phase oxidation combining with CaCO3 slurry absorption[J]. Environmental Pollution & Control, 2017, 39(5): 504-509. | |
5 | 朱兆友, 徐超, 高秀, 等. H2O2氧化-碱液吸收脱除NO x 的工艺研究[J]. 化学与生物工程, 2011, 28(1): 76-78. |
ZHU Zhaoyou, XU Chao, GAO Xiu, et al. Study on removal technique of nitrogen oxides by H2O2 oxidation-alkali liquor absorption[J]. Chemistry & Bioengineering, 2011, 28(1): 76-78. | |
6 | THOMAS D, VANDERSCHUREN J. Nitrogen oxides scrubbing with alkaline solutions[J]. Chemical Engineering & Technology, 2000, 23(5): 449-455. |
7 | ZHANG Shihan, CAI Linglin, MI Xuhong, et al. NO x removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter[J]. Environmental Science & Technology, 2008, 42(10): 3814-3820. |
8 | LI Wei, ZHANG Lei, LIU Nan, et al. Evaluation of NO removal from flue gas by a chemical absorption-biological reduction integrated system: complexed NO conversion pathways and nitrogen equilibrium analysis[J]. Energy & Fuels, 2014, 28(7): 4725-4730. |
9 | LIU Nan, JIANG Yan, ZHANG Lei, et al. Evaluation of NO x removal from flue gas by a chemical absorption-biological reduction integrated system: glucose consumption and utilization pathways[J]. Energy & Fuels, 2014, 28(12): 7591-7598. |
10 | VAN DER MAAS Peter, HARMSEN Loes, WEELINK Sander, et al. Denitrification in aqueous FeEDTA solutions[J]. Journal of Chemical Technology & Biotechnology, 2004, 79(8): 835-841. |
11 | LI Wei, WU Chengzhi, SHI Yao. Metal chelate absorption coupled with microbial reduction for the removal of NO x from flue gas[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(3): 306-311. |
12 | ZHANG Shihan, SHI Yao, LI Wei. Biological and chemical interaction of oxygen on the reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NO x removal system[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2653-2659. |
13 | ZHANG Chunyan, ZHAO Jingkai, SUN Cheng, et al. Two-stage chemical absorption-biological reduction system for NO removal: system start-up and optimal operation mode[J]. Energy & Fuels, 2018, 32(7): 7701-7707. |
14 | LEE Brady D, APEL William A, SMITH William A. Oxygen effects on thermophilic microbial populations in biofilters treating nitric oxide containing off-gas streams[J]. Environmental Progress, 2001, 20(3): 157-166. |
15 | ZHANG Shihan, CAI Linglin, LIU Yun, et al. Effects of N O 2 - and N O 3 - on the Fe(Ⅲ)EDTA reduction in a chemical absorption-biological reduction integrated NO x removal system[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 557-563. |
16 | LI Wei, LI Meifang, ZHANG Lei, et al. Enhanced NO x removal performance and microbial community shifts in an oxygen-resistance chemical absorption-biological reduction integrated system[J]. Chemical Engineering Journal, 2016, 290: 185-192. |
17 | NIU Meiqing, ZHANG Weijun, WANG Dongsheng, et al. Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants[J]. Bioresource Technology, 2013, 144: 337-343. |
18 | LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. The Journal of Biological Chemistry, 1951, 193(1): 265-275. |
19 | DUBOIS Michel, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. |
20 | YANG Jingrui, WANG Ying, CHEN Hu, et al. Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification[J]. Bioresource Technology, 2019, 274: 56-64. |
21 | LU Bihong, JIANG Yan, CAI Linglin, et al. Enhanced biological removal of NO x from flue gas in a biofilter by Fe(Ⅱ)Cit/Fe(Ⅱ)EDTA absorption[J]. Bioresource Technology, 2011, 102(17): 7707-7712. |
22 | DONG Xiyang, ZHANG Yu, ZHOU Jiti, et al. Reduction of Fe(Ⅲ)EDTA in a NO x scrubber liquor by a denitrifying bacterium and the effects of inorganic sulfur compounds on this process[J]. Bioresource Technology, 2012, 120: 127-132. |
23 | 夏银锋, 陈晗, 林依慧, 等. 氧气浓度对CABER脱硝效率及微生物群落结构的影响[J]. 高校化学工程学报, 2021, 35(3): 560-566. |
XIA Yinfeng, CHEN Han, LIN Yihui, et al. Effects of oxygen concentration on NO x removal efficiency and microbial community structure of CABER[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(3): 560-566. | |
24 | LIU Yongqiang, LIU Yu, Joo Hwa TAY. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology, 2004, 65(2): 143-148. |
25 | ZHANG Xiaoqi, BISHOP Paul L, KINKLE Brian K. Comparison of extraction methods for quantifying extracellular polymers in biofilms[J]. Water Science and Technology, 1999, 39(7): 211-218. |
26 | 孙洪伟, 陈翠忠, 吴长峰, 等. 温度对SBR生物脱氮效能及胞外聚合物的影响[J]. 环境科学, 2017, 38(11): 4648-4655. |
SUN Hongwei, CHEN Cuizhong, WU Changfeng, et al. Effect of temperature on nitrogen removal performance and the extracellular polymeric substance(EPS) in a sequencing batch reactor(SBR)[J]. Environmental Science, 2017, 38(11): 4648-4655. | |
27 | OSAKA Toshifumi, YOSHIE Sachiko, TSUNEDA Satoshi, et al. Identification of acetate-or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing[J]. Microbial Ecology, 2006, 52(2): 253-266. |
28 | WU Weizhong, YANG Luhua, WANG Jianlong. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor[J]. Environmental Science and Pollution Research, 2013, 20(1): 333-339. |
29 | ZHAO Jianguo, LI Yu, LI Yahe, et al. Effects of humic acid on sludge performance, antibiotics resistance genes propagation and functional genes expression during Cu(II)-containing wastewater treatment via metagenomics analysis[J]. Bioresource Technology, 2021, 323: 124575. |
30 | WANG Jiale, GONG Benzhou, HUANG Wei, et al. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing[J]. Bioresource Technology, 2017, 228: 31-38. |
31 | CHENG Qingfeng, LIU Zongyang, HUANG Yang, et al. Influence of temperature on CODMn and Mn2+ removal and microbial community structure in pilot-scale biofilter[J]. Bioresource Technology, 2020, 316: 123968. |
32 | SUN Na, GE Chenghao, AHMAD Hafiz Adeel, et al. Realization of microbial community stratification for single-stage nitrogen removal in a sequencing batch biofilter granular reactor[J]. Bioresource Technology, 2017, 241: 681-691. |
33 | WEI Huawei, WANG Jie, HASSAN Muhammad, et al. Anaerobic ammonium oxidation-denitrification synergistic interaction of mature landfill leachate in aged refuse bioreactor: variations and effects of microbial community structures[J]. Bioresource Technology, 2017, 243: 1149-1158. |
34 | ABENDROTH Christian, HAHNKE Sarah, CODOÑER Francisco M, et al. Complete genome sequence of a new Firmicutes species isolated from anaerobic biomass hydrolysis[J]. Genome Announcements, 2017, 5(40): e00686-e00617. |
35 | VERBAENDERT Ines, BOON Nico, DE VOS Paul, et al. Denitrification is a common feature among members of the genus Bacillus [J]. Systematic and Applied Microbiology, 2011, 34(5): 385-391. |
36 | LU Huijie, CHANDRAN Kartik, STENSEL David. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. |
37 | ZHANG Qi, WANG Chunrong, JIANG Longxin, et al. Impact of dissolved oxygen on the microbial community structure of an intermittent biological aerated filter (IBAF) and the removal efficiency of gasification wastewater[J]. Bioresource Technology, 2018, 255: 198-204. |
38 | YANG Yunlong, HUANG Shaobin, LIANG Wei, et al. Microbial removal of NO x at high temperature by a novel aerobic strain Chelatococcus daeguensis TAD1 in a biotrickling filter[J]. Journal of Hazardous Materials, 2012, 203/204: 326-332. |
39 | YANG Yunlong, HUANG Shaobin, ZHANG Yongqing, et al. Nitrogen removal by Chelatococcus daeguensis TAD1 and its denitrification gene identification[J]. Applied Biochemistry and Biotechnology, 2014, 172(2): 829-839. |
40 | ZHANG Shihan, CHEN Han, XIA Yinfeng, et al. Re-acclimation performance and microbial characteristics of a thermophilic biofilter for NO x removal from flue gas[J]. Applied Microbiology and Biotechnology, 2015, 99(16): 6879-6887. |
[1] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[2] | LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876. |
[3] | YANG Xigang, CHEN Guoqing, HUANG Linbin, GU Shijun, LI Changsong, ZHANG Yong, JIN Baosheng. Industrial experiment on the effect of SNCR using urea as the reducing agent on the operation of large capacity power station pulverized coal boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3573-3581. |
[4] | HAN Delin, LI Dan, WANG Tiantian, ZHANG Hai, ZHANG Yang, WANG Suilin. Emission characteristics of swirl premixed combustion stabilized using a displacing bluff body [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2915-2923. |
[5] | WANG Xinyu, HUANG Yaji, XU Ligang, LI Zhiyuan, LI Si, LIU Xiaodong. Numerical simulation on regulating secondary air in same layer to alleviate high temperature corrosion of dual tangential boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2292-2300. |
[6] | Guozhi FU, Wenyang GUO, Zonghu MA, Wei LIU, Bokai LI, Ziyan SUN, Zhenxin WANG, Yeqing LI. Analysis of gas generation performance and key microorganisms of high solid anaerobic digestion of straw mixed with pig manure [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3386-3394. |
[7] | Jing GUAN, Xilong LAN, Hong SUN, Zhigang LIU, Tong QIAO. Influence of different doped metal cations on the activity and SO2 resistance of Mn based catalysts for NH3-SCR reaction [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2440-2446. |
[8] | Chunlin ZHAO, Ziran MA, Baodong WANG, Ge LI, Hongyan WANG, Jiali ZHOU, Guangjie LU, Yuting XIAO, Jianhui YANG, Jinfeng LU. Research progress of catalyst coating process for exhaust gas treatment from fixed source [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4015-4023. |
[9] | Sai CHEN, Mingsheng JIA, Minggao GUO, Gaozhen LIU. Application of SNCR to reduction of NOx in an industrial scale slag-tap pulverized coal boiler [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4290-4296. |
[10] | Zongyu WANG,Hailang KUANG,Jifeng ZHANG,Lilin CHU,Yulong JI. Experimental of diesel engine denitration by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4755-4766. |
[11] | Zhonglei FAN, Yubing ZHOU, Dianhe LIU, Xiaofeng WEI, Qiang GUO, Kai WANG. Emission characteristics of nitrogen oxides from gas steam combined cycle unit [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2056-2062. |
[12] | Daojun ZHANG, Ziran MA, Qi SUN, Wenqiang XU, Yonglong LI, Tao ZHU, Baodong WANG. Progress in the mechanism of selective catalytic reduction (SCR) reaction [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1611-1623. |
[13] | HAN Fanian, YAN Zhiyong. Advances in ammonia injection and mixing device of SCR-DeNOx system [J]. Chemical Industry and Engineering Progree, 2015, 34(12): 4151-4157. |
[14] | CHEN Guoqing, GAO Jihui, HUANG Qilong, DAI Weibao, CAI Pei, WU Shaohua, QIN Yukun. Research progress of SO2 and NOx synergistic removal by calcium-based desulfurization [J]. Chemical Industry and Engineering Progree, 2015, 34(10): 3755-3761. |
[15] | LI Li1,HUANG Huacun2,WEI Tengyou1,SUN Jianhua1,TONG Zhangfa1. Influence of cerium additive on selective catalytic reduction of NOx with MnOx/ACFN catalyst [J]. Chemical Industry and Engineering Progree, 2013, 32(11): 2655-2660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |