Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6010-6030.DOI: 10.16085/j.issn.1000-6613.2023-1761
• Chemical processes and equipment • Previous Articles
YIN Rui1(), YIN Shaowu1,2(), YANG Likun1, TONG Lige1, LIU Chuanping1, WANG Li1
Received:
2023-10-09
Revised:
2024-01-01
Online:
2024-12-07
Published:
2024-11-15
Contact:
YIN Shaowu
尹瑞1(), 尹少武1,2(), 杨立坤1, 童莉葛1, 刘传平1, 王立1
通讯作者:
尹少武
作者简介:
尹瑞(1999—),女,硕士研究生,研究方向为数据中心热管理。E-mail:yr2601444245@163.com。
基金资助:
CLC Number:
YIN Rui, YIN Shaowu, YANG Likun, TONG Lige, LIU Chuanping, WANG Li. Progress of chip-level indirect liquid cooling technology and enhanced heat transfer in data centers[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6010-6030.
尹瑞, 尹少武, 杨立坤, 童莉葛, 刘传平, 王立. 数据中心芯片级间接液冷技术与强化传热进展[J]. 化工进展, 2024, 43(11): 6010-6030.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1761
液冷方式 | 实现方式 | 冷媒工质 |
---|---|---|
直接接触式 | ||
喷淋式 | 液体定向喷淋到主要发热元件上,带走热量 | 硅油、矿物油、氟化液 |
浸没式 | 服务器浸没在冷却液中,通过液体流动散热 | 硅油、矿物油、氟化液 |
间接接触式 | ||
单相冷却 | 循环冷却剂在冷板内流动,利用显热带走热量 | 纯水、氟化液、醇类液体 |
两相冷却 | 循环冷却剂发生液-气相变,利用显热及潜热带走热量 | 低沸点的介质流体和制冷剂 |
热管冷却 | 由热源和散热器之间的温差驱动传热,使发热元件的热量发生空间转移 | 热管冷却剂:水、甲醇、丙酮、氨、R141b、 NF、SiO2-H2O;冷凝器冷却剂:空气、水 |
液冷方式 | 实现方式 | 冷媒工质 |
---|---|---|
直接接触式 | ||
喷淋式 | 液体定向喷淋到主要发热元件上,带走热量 | 硅油、矿物油、氟化液 |
浸没式 | 服务器浸没在冷却液中,通过液体流动散热 | 硅油、矿物油、氟化液 |
间接接触式 | ||
单相冷却 | 循环冷却剂在冷板内流动,利用显热带走热量 | 纯水、氟化液、醇类液体 |
两相冷却 | 循环冷却剂发生液-气相变,利用显热及潜热带走热量 | 低沸点的介质流体和制冷剂 |
热管冷却 | 由热源和散热器之间的温差驱动传热,使发热元件的热量发生空间转移 | 热管冷却剂:水、甲醇、丙酮、氨、R141b、 NF、SiO2-H2O;冷凝器冷却剂:空气、水 |
技术 | 强化方式 | 实现途径 | 结果 |
---|---|---|---|
单相、两相冷却 | 调整冷却流体 | 改变流速;改变冷却液种类,添加纳米材料等;调整充液率 | 调整流体热性能和水动力性能,改善换热能力 |
改善流道 | 常规、仿生、拓扑优化结构;改变尺寸参数 | 改变流体水动力性能,影响均温性及散热效果 | |
改变壳体材质 | 高导热性材料;多孔材料;表面处理 | 调整界面热阻及换热效果 | |
改变操作环境 | 磁场;放置方向 | 影响流动及换热 | |
热管冷却 | 调整工作流体 | 调整充液率;改变管内工质 | 影响换热能力、应对失效性问题 |
改变形状或布置方式 | L、H、U等形状;调整热管倾角 | 影响散热器整体热阻及CPU冷却效果 | |
耦合技术 | 单相冷却+热管冷却 | 热管冷凝段使用冷板换热 | 快速导出的热量被冷板高效散出 |
热管冷却+相变材料 | 将热管埋入相变材料或用相变材料环绕 | 快速导热的同时,均衡被冷却元件的温度 | |
单相冷却+相变材料 | 将相变材料添加到冷板附近 | 均衡温度的同时,将热量高效带出 | |
热管/冷板+TEG | 利用温差在冷却系统中添加TEG | 回收能量,节能 |
技术 | 强化方式 | 实现途径 | 结果 |
---|---|---|---|
单相、两相冷却 | 调整冷却流体 | 改变流速;改变冷却液种类,添加纳米材料等;调整充液率 | 调整流体热性能和水动力性能,改善换热能力 |
改善流道 | 常规、仿生、拓扑优化结构;改变尺寸参数 | 改变流体水动力性能,影响均温性及散热效果 | |
改变壳体材质 | 高导热性材料;多孔材料;表面处理 | 调整界面热阻及换热效果 | |
改变操作环境 | 磁场;放置方向 | 影响流动及换热 | |
热管冷却 | 调整工作流体 | 调整充液率;改变管内工质 | 影响换热能力、应对失效性问题 |
改变形状或布置方式 | L、H、U等形状;调整热管倾角 | 影响散热器整体热阻及CPU冷却效果 | |
耦合技术 | 单相冷却+热管冷却 | 热管冷凝段使用冷板换热 | 快速导出的热量被冷板高效散出 |
热管冷却+相变材料 | 将热管埋入相变材料或用相变材料环绕 | 快速导热的同时,均衡被冷却元件的温度 | |
单相冷却+相变材料 | 将相变材料添加到冷板附近 | 均衡温度的同时,将热量高效带出 | |
热管/冷板+TEG | 利用温差在冷却系统中添加TEG | 回收能量,节能 |
61 | WAN Zhenping, HU Xuesong, WANG Xiaowu, et al. Experimental study on the boiling/condensation heat transfer performance of a finned tube with a hydrophilic/hydrophobic surface[J]. Applied Thermal Engineering, 2023, 229: 120494. |
62 | YUAN Xiao, DU Yanping, XU Qian, et al. Synergistic effect of mixed wettability of micro-nano porous surface on boiling heat transfer enhancement[J]. Thermal Science and Engineering Progress, 2023. 42: 101933. |
63 | 刘冉, 夏国栋, 杜墨. 三角形微通道内纳米流体流动与换热特性[J]. 化工学报, 2016, 67(12): 4936-4943. |
LIU Ran, XIA Guodong, DU Mo. Characteristics of convective heat transfer in triangular microchannel heat sink using different nanofluids[J]. CIESC Journal, 2016, 67(12): 4936-4943. | |
64 | HO C J, WEI L C, LI Z W. An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid[J]. Applied Thermal Engineering, 2010, 30(2/3): 96-103. |
65 | LOTFI R, SABOOHI Y, RASHIDI A M. Numerical study of forced convective heat transfer of nanofluids: Comparison of different approaches[J]. International Communications in Heat and Mass Transfer, 2010, 37(1): 74-78. |
66 | 胡旺盛. 纳米流体在内置螺旋扭带管内流动与强化传热特性研究[D]. 邯郸: 河北工程大学, 2020. |
HU Wangsheng. Study on the characteristics of nanofluid flow and heat transfer enhancement in a built-in twisted tape tube[D]. Handan: Hebei University of Engineering, 2020. | |
67 | WU Junmei, ZHAO Jiyun, LEI Jiang, et al. Effectiveness of nanofluid on improving the performance of microchannel heat sink[J]. Applied Thermal Engineering, 2016, 101: 402-412. |
68 | 王琛. 基于CPU散热的微通道强化传热数值模拟与实验研究[D]. 徐州: 中国矿业大学, 2022. |
WANG Chen. Numerical and experimental study on heat transfer enhancement of CPU cooling based on microchannel[D], Xuzhou: China University of Mining & Technology, 2022. | |
69 | DBOUK T. A new technology for CPU chip cooling by concentrated suspension flow of non-colloidal particles[J]. Applied Thermal Engineering, 2019, 146: 664-673. |
70 | 丁愫. 高热通量数据中心不同冷却系统的能耗分析[D]. 天津: 天津商业大学, 2021. |
DING Su. Energy consumption analysis of different cooling systems of data center with high heat flux density[D]. Tianjin: Tianjin University of Commerce, 2021. | |
71 | 白国君, 张晶, 马文强, 等. 微通道内Al2O3-水纳米流体强制对流换热的数值研究[J]. 甘肃科学学报, 2017, 29(4): 42-47. |
BAI Guojun, ZHANG Jing, MA Wenqiang, et al. Numerical Study of forced convection heat transfer of Al2O3-water nanofluids in microchannels[J]. Journal of Gansu Sciences, 2017, 29(4): 42-47. | |
72 | 王宏宇, 王助良, 杜敏, 等. 纳米流体的制备及稳定性分析[J]. 河南科技大学学报(自然科学版), 2016, 37(1): 5-8. |
WANG Hongyu, WANG Zhuliang, DU Min, et al. Preparation and stability analysis of nanofluids[J]. Journal of Henan University of Science & Technology (Natural Science), 2016, 37(1): 5-8. | |
73 | WANG Yixin, ZOU Changjun, LI Wenjing, et al. Improving stability and thermal properties of TiO2 nanofluids by supramolecular modification: High energy efficiency heat transfer medium for data center cooling system[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119735. |
74 | ABB评论. 数据中心纳米流体制冷[EB/OL]. (2020) [2023-12-19]. . |
comments ABB. Data center nanofluids refrigeration[EB/OL]. (2020) [2023-12-19]. . | |
75 | KEKLIKCIOGLU CAKMAK Nese. The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 1895-1902. |
76 | 郭永健. 磁场作用下磁性纳米流体强化对流换热实验研究[D]. 吉林: 东北电力大学, 2020. |
GUO Yongjian. Experimental study on magnetic nanofluid enhanced convection heat transfer under magnetic field[D]. Jilin: Northeast Dianli University, 2020. | |
77 | ZHENG Yuanzhou, SHAHSAVAR Amin, AFRAND Masoud. Sonication time efficacy on Fe3O4-liquid paraffin magnetic nanofluid thermal conductivity: An experimental evaluation[J]. Ultrasonics Sonochemistry, 2020, 64: 105004. |
78 | 刘正伟. 基于Fe3O4-H2O磁性纳米流体微通道内流动换热性能研究[D]. 桂林: 桂林电子科技大学, 2022. |
1 | HE Zhiguang, XI Haonan, WANG Jianmin, et al. Synergy optimization analysis of heat transfer performance and energy consumption in heat transfer process and its application in data centers[J]. Applied Energy, 2022, 307: 118276. |
2 | ZHANG Yelong, ZHAO Yanqi, DAI Siyuan, et al. Cooling technologies for data centres and telecommunication base stations — A comprehensive review[J]. Journal of Cleaner Production, 2022, 334: 130280. |
3 | 陈焕新, 程亨达. 数据中心及超算中心冷却技术研究及应用进展[C]//“2022年双碳背景下中国制冷技术研究及应用进展论坛”会议论文集. 北京, 2023: 50-55. |
CHEN Huanxin, CHENG Hengda. Research and application progress of cooling technology in data centers and supercomputing centers[C]// Proceedings of “China refrigeration technology research and application forum in 2022 under the background of dual-carbon”. Beijing, 2023: 50-55. | |
4 | 李云飞. 关于数据中心液冷技术应用现状和趋势研究[J]. 中国新通信, 2022, 24(12): 72-74. |
LI Yunfei. Research on application status and trend of liquid cooling technology in data center[J]. China New Telecommunications, 2022, 24(12): 72-74. | |
5 | 崔康吉, 余亮. 数据中心的高效液冷散热系统设计[J]. 长江信息通信, 2022, 35(8): 116-118. |
CUI Kangji, YU Liang. Design of high efficiency liquid cooling system in the datacenter[J]. Changjiang Information & Communications, 2022, 35(8): 116-118. | |
6 | 叶琴, 陈才, 陈彪, 等. 基于某国产双路服务器的液冷散热性能实验研究[J]. 计算机工程与科学, 2023, 45(4): 607-612. |
YE Qin, CHEN Cai, CHEN Biao, et al. Experimental research on liquid cooling performance of a domestic dual-socket server[J]. Computer Engineering & Science, 2023, 45(4): 607-612. | |
7 | 陈心拓, 周黎旸, 张程宾, 等. 绿色高能效数据中心散热冷却技术研究现状及发展趋势[J]. 中国工程科学, 2022, 24(4): 94-104. |
CHEN Xintuo, ZHOU Liyang, ZHANG Chengbin, et al. Research status and future development of cooling technologies for green and energy-efficient data centers[J]. Strategic Study of CAE, 2022, 24(4): 94-104. | |
78 | LIU Zhengwei. Study on flow and heat transfer performance of magnetic nanofluids based on Fe3O4-H2O in microchannels[D]. Guilin: Guilin University of Electronic Technology, 2022. |
79 | ZHANG Yifan, FAN Yongxiang, LIU Zhichun, et al. Experimental and numerical study on two-phase minichannel cold plate for high-power device[J]. Applied Thermal Engineering, 2023, 230: 120704. |
80 | 祝清晖. 数据中心液冷散热系统热管理研究[D]. 大连: 大连理工大学, 2022. |
ZHU Qinghui. Research on the thermal management of liquid cooling system in data center[D]. Dalian: Dalian University of Technology, 2022. | |
81 | 郑师晨. 多芯片PCB板微通道液冷设计及散热性能研究[D]. 成都: 电子科技大学, 2022. |
ZHENG Shichen. Research on microchannel liquid cooling design and its thermal performance of multi-chip PCB board[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
82 | DENG Zeng, ZHANG Shunlu, MA Kefan, et al. Numerical and experimental study on cooling high power chips of data centers using double-side cooling module based on mini-channel heat sink[J]. Applied Thermal Engineering, 2023, 227: 120282. |
83 | WIRIYASART Songkran, NAPHON Paisarn. Liquid impingement cooling of cold plate heat sink with different fin configurations: High heat flux applications[J]. International Journal of Heat and Mass Transfer, 2019, 140: 281-292. |
84 | ZHANG Jinjie, ZHANG Guanhua, DU Yanping, et al. Flow and heat transfer behaviour of nucleating agent-enhanced nanofluids through manifold mini-channels[J]. Applied Thermal Engineering, 2024, 236: 121587. |
85 | Remco VAN ERP, SOLEIMANZADEH Reza, NELA Luca, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216. |
86 | KONG Daeyoung, JUNG Euibeen, KIM Yunseo, et al. An additively manufactured manifold-microchannel heat sink for high-heat flux cooling[J]. International Journal of Mechanical Sciences, 2023, 248: 108228. |
87 | 杨敏, 刘源斌, 于新刚, 等. 基于机器学习方法的微通道热沉性能预测研究[J]. 工程热物理学报, 2023, 44(6): 1704-1708. |
YANG Min, LIU Yuanbin, YU Xingang, et al. Investigation on the performance prediction of microchannel heat sink based on machine learning approach[J]. Journal of Engineering Thermophysics, 2023, 44(6): 1704-1708. | |
88 | NeoGene通过新IC封装方法研发的 3D嵌入式液冷技术详解[EB/OL]. (2023-03-18) [2023-12-19]. |
Detailed explanation of 3D embedded liquid cooling technology developed by NeoGene through new IC packaging method [EB/OL]. (2023-03-18) [2023-12-19]. | |
89 | GORZIN M, RANJBAR A A, HOSSEINI M J. Experimental and numerical investigation on thermal and hydraulic performance of novel serpentine minichannel heat sink for liquid CPU cooling[J]. Energy Reports, 2022, 8: 3375-3385. |
90 | BAHIRAEI Mehdi, MAZAHERI Nima. Application of an ecofriendly nanofluid containing graphene nanoplatelets inside a novel spiral liquid block for cooling of electronic processors[J]. Energy, 2021, 218: 119395. |
91 | GHADIKOLAEI S S, SIAHCHEHREHGHADIKOLAEI Soheil, GHOLINIA M, et al. A CFD modeling of heat transfer between CGNPs/H2O eco-friendly nanofluid and the novel nature-based designs heat sink: Hybrid passive techniques for CPU cooling[J]. Thermal Science and Engineering Progress, 2023, 37: 101604. |
92 | RUI Ziliang, ZHAO Fei, SUN Hong, et al. Experimental research on flow boiling thermal-hydraulic characteristics in novel microchannels[J]. Experimental Thermal and Fluid Science, 2023, 140: 110755. |
93 | OZGUC Serdar, TEAGUE Trevor F G, PAN Liang, et al. Experimental study of topology optimized, additively manufactured microchannel heat sinks designed using a homogenization approach[J]. International Journal of Heat and Mass Transfer, 2023, 209: 124108. |
94 | 孟凡振, 丁晓红, 李昊, 等. 层次脉状结构液冷均温板优化设计研究[J]. 机械工程学报, 2022, 58(22): 426-437. |
MENG Fanzhen, DING Xiaohong, LI Hao, et al. Study on optimal design of liquid cooling uniform temperature plate embedded with hierarchical vein structure[J]. Journal of Mechanical Engineering, 2022, 58(22): 426-437. | |
95 | 凌云志. 基于相变材料/脉动热管耦合模块的数据中心热管理研究[D]. 南京: 东南大学, 2019. |
LING Yunzhi. Research on thermal management of data center based on phase change material/pulsating heat pipe coupling module[D]. Nanjing: Southeast University, 2019. | |
8 | 高益兵, 刘超杰, 赵保周. 刀片服务器液冷系统的设计和探究[J]. 电子机械工程, 2020, 36(6): 20-23, 41. |
GAO Yibing, LIU Chaojie, ZHAO Baozhou. Design and exploration on liquid cooling system of blade server[J]. Electro-Mechanical Engineering, 2020, 36(6): 20-23, 41. | |
9 | KHEIRABADI Ali C, GROULX Dominic. Experimental evaluation of a thermal contact liquid cooling system for server electronics[J]. Applied Thermal Engineering, 2018, 129: 1010-1025. |
10 | 包云皓, 陈建业, 邵双全. 数据中心高效液冷技术研究现状[J]. 制冷与空调, 2023, 23(10): 58-69. |
BAO Yunhao, CHEN Jianye, SHAO Shuangquan. Research status of high-efficient liquid cooling technology in data center[J]. Refrigeration and Air-Conditioning, 2023, 23(10): 58-69. | |
11 | 黄俊珺. 液冷板微流道设计及仿真分析优化[D]. 常州: 常州大学, 2022. |
HUANG Junjun. Design and simulation analysis optimization of liquid cooling microchannel plate[D]. Changzhou: Changzhou University, 2022. | |
12 | 吕嗣鸿. 均温散热微小通道的结构研究[D]. 成都: 电子科技大学, 2021. |
Sihong LYU. Research on the structure of microchannel for heat dissipation and uniform temperature[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
13 | 黄菀清. 三维针翅式散热器的MMC拓扑优化方法[D]. 大连: 大连理工大学, 2022. |
HUANG Wanqing. Topology optimization method of MMC for the three dimensional pin-fin heat sink[D]. Dalian: Dalian University of Technology, 2022. | |
14 | 殷佳辉, 朱兵, 张一鸣, 等. 基于机器学习的数据中心稳态热参数预测[J]. 计算机时代, 2023(11): 71-75. |
96 | TANG Zhibo, QI Cong, TIAN Zhen, et al. Thermal management of electronic components based on new wave bio-inspired structures and nanofluids[J]. International Communications in Heat and Mass Transfer, 2022, 131: 105840. |
97 | WANG Yabo, WANG Bin, ZHU Kai, et al. Energy saving potential of using heat pipes for CPU cooling[J]. Applied Thermal Engineering, 2018, 143: 630-638. |
98 | 诸凯, 刘泽宽, 何为, 等. 数据中心服务器CPU水冷散热器的优化设计[J]. 制冷学报, 2019, 40(2): 36-42. |
ZHU Kai, LIU Zekuan, HE Wei, et al. Optimal design of CPU water-cooled radiator in a data center server[J]. Journal of Refrigeration, 2019, 40(2): 36-42. | |
99 | LAHMER El Bachir, MOUSSAOUI Mohammed Amine, BODE Florin, et al. Quality of heat transfer assessment of two microprocessors by double-layered mini channel heat sink cooling system for moderate Reynolds number[J]. Thermal Science and Engineering Progress, 2023, 41: 101804. |
100 | CHOI Jeehoon, JEONG Minjoong. Preliminary design on high-end workstation cooling system using loop heat pipes[J]. Thermal Science and Engineering Progress, 2020, 20: 100519. |
101 | MANOJ Aditya, GODDUMARRI Upasana Vaishnavi, RAJALINGAM A, et al. Heat transfer and fluid flow characteristics of a microchannel heat sink with microplates — A critical computational study[J]. Applied Thermal Engineering, 2023, 226: 120309. |
102 | NADA S A, EL-ZOHEIRY R M, ELSHARNOBY M, et al. Experimental investigation of hydrothermal characteristics of data center servers’ liquid cooling system for different flow configurations and geometric conditions[J]. Case Studies in Thermal Engineering, 2021, 27: 101276. |
103 | TAN Zhiming, JIN Puhang, ZHANG Yingchun, et al. Flow and thermal performance of a multi-jet twisted square microchannel heat sink using CuO-water nanofluid[J]. Applied Thermal Engineering, 2023, 225: 120133. |
104 | AMINOSSADATI S M, RAISI A, GHASEMI B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel[J]. International Journal of Non-Linear Mechanics, 2011, 46(10): 1373-1382. |
105 | VALIALLAH MOUSAVI S, BARZEGAR GERDROODBARY M, SHEIKHOLESLAMI M, et al. The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel[J]. The European Physical Journal Plus, 2016, 131(9): 347. |
106 | BENNIA A, BOUAZIZ M N. CFD modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe3O4 magnetic nanofluid in the presence of a magnetic field[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 127-136. |
14 | YIN Jiahui, ZHU Bing, ZHANG Yiming, et al. Machine learning-based prediction of steady-state thermal parameters in data centers[J]. Computer Era, 2023(11): 71-75. |
15 | 刘俊男. 基于机器学习的PEMFC仿水滴阻块流道结构优化与性能预测[D]. 吉林: 东北电力大学, 2023. |
LIU Junnan. PEMFC imitated water-drop block channel structure optimization and performance prediction based on machine learning[D]. Jilin: Northeast electric power university, 2023. | |
16 | 朱隆祥, 张卢腾, 孙皖, 等. 基于非监督机器学习方法的竖直环形流道流动沸腾流型研究[J]. 核动力工程, 2023, 44(3): 112-120. |
ZHU Longxiang, ZHANG Luteng, SUN Wan, et al. Identification of flow regime of boiling flow in a vertical annulus with unsupervised machine learning[J]. Nuclear Power Engineering, 2023, 44(3): 112-120. | |
17 | 张缙, 刘智, 刘意, 等. 基于智能算法的双面散热SiC功率模块多目标优化设计[J]. 电工技术学报, 2023, 38(20): 5515-5529. |
ZHANG Jin, LIU Zhi, LIU Yi, et al. Multi-objective optimization design of double-sided cooling SiC power module based on intelligent algorithm [J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5515-5529. | |
18 | 董馨, 刘小民. 微流控芯片通道结构的拓扑优化研究[J]. 西安交通大学学报, 2018, 52(6): 143-149. |
DONG Xin, LIU Xiaomin. Topology optimization of the channel structure in microfluidic chips[J]. Journal of Xi’an Jiaotong University, 2018, 52(6): 143-149. | |
19 | 王磊, 魏晓光, 唐新灵, 等. 功率器件封装结构热设计综述[J]. 中国电机工程学报, 2024, 44(7): 2748-2774. |
WANG Lei, WEI Xiaoguang, TANG Xinling, et al. Review on thermal design of power device package structures[J]. Proceedings of the CSEE, 2024, 44(7): 2748-2774. | |
20 | HEYDARI Ali, GHARAIBEH Ahmad R, TRADAT Mohammad, et al. Experimental evaluation of direct-to-chip cold plate liquid cooling for high-heat-density data centers[J]. Applied Thermal Engineering, 2024, 239: 122122. |
21 | A·埃达里. 用于数据中心的智能集成式液冷机架: CN114402707A[P]. 2022-04-26. |
EDARI Abdellah. Intelligent integrated liquid cooling rack for data center: CN114402707A[P]. 2022-04-26. | |
107 | 王冠楠. 电场强化微通道中纳米流体换热特性的数值模拟研究[D]. 杭州: 杭州电子科技大学, 2022. |
WANG Guannan. Study on the influence of nanofluids heat transfer in microchannel with applied electric field[D]. Hangzhou: Hangzhou Dianzi University, 2022. | |
108 | IZADI Aliakbar, SIAVASHI Majid, RASAM Hamed, et al. MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling[J]. Applied Thermal Engineering, 2020, 168: 114843. |
109 | QI Cong, TANG Jinghua, FAN Fan, et al. Effects of magnetic field on thermo-hydraulic behaviors of magnetic nanofluids in CPU cooling system[J]. Applied Thermal Engineering, 2020, 179: 115717. |
110 | 谢文强. 微通道内纳米流体流动换热特性分析[D]. 桂林: 桂林电子科技大学, 2022. |
XIE Wenqiang. Analysis of heat transfer characteristics of nanofluid flow in microchannels[D]. Guilin: Guilin University of Electronic Technology, 2022. | |
111 | SHAO Shuangquan, LIU Haichao, ZHANG Hainan, et al. Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers[J]. Energy, 2019, 185: 829-836. |
112 | SIRICHAROENPANICH A, WIRIYASART S, SRICHAT A, et al. Thermal management system of CPU cooling with a novel short heat pipe cooling system[J]. Case Studies in Thermal Engineering, 2019, 15: 100545. |
113 | Matic MOŽE, Aljaž NEMANIČ, Primož POREDOŠ. Experimental and numerical heat transfer analysis of heat-pipe-based CPU coolers and performance optimization methodology[J]. Applied Thermal Engineering, 2020, 179: 115720. |
114 | WANG Yaxiong, WANG Jinrong, HE Xiufen, et al. Experimental investigation of the thermal performance of a heat sink with U-shaped heat pipes[J]. Applied Thermal Engineering, 2021, 186: 116387. |
115 | MAALEJ S, ZAYOUD A, ABDELAZIZ I, et al. Thermal performance of finned heat pipe system for central processing unit cooling[J]. Energy Conversion and Management, 2020, 218: 112977. |
116 | 王晶, 林湧双, 朱坤元, 等. 服务器水冷热管散热系统设计及性能分析[J]. 科技创新导报, 2015, 12(5): 58-59. |
22 | 肖新文. 数据中心液冷技术应用研究进展[J]. 暖通空调, 2022, 52(1): 52-65. |
XIAO Xinwen. Review on liquid cooling technologies applied to data centers[J]. Heating Ventilating & Air Conditioning, 2022, 52(1): 52-65. | |
23 | 肖新文, 曾春利, 邝旻. 直接接触冷板式液冷在数据中心的运用探讨[J]. 制冷与空调, 2018, 18(6): 67-72. |
XIAO Xinwen, ZENG Chunli, KUANG Min. Application of direct contacted liquid cooling system in data center[J]. Refrigeration and Air-Conditioning, 2018, 18(6): 67-72. | |
24 | TONG Zhen, DING Tao, LI Zhen, et al. An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center[J]. Applied Thermal Engineering, 2015, 90: 362-365. |
25 | MA Yuezheng, MA Guoyuan, ZHANG Shuang, et al. Cooling performance of a pump-driven two phase cooling system for free cooling in data centers[J]. Applied Thermal Engineering, 2016, 95: 143-149. |
26 | SONG Mengjie, JIANG Zhengyong, ZHANG Xuan, et al. Mechanism of flow boiling in microchannels and structure optimization of heat exchangers used in pumped two-phase cooling system for data center cooling[M]//Handbook of thermal management systems. Amsterdam: Elsevier, 2023: 727-745. |
27 | 杜俊明. 数据中心服务器主被动式多层级两相流散热系统研究[D]. 南京: 东南大学, 2022. |
DU Junming. Active and passive multi-level two-phase flow cooling system for data center servers[D]. Nanjing: Southeast University, 2022. | |
28 | 杨文量, 方奕栋, 胡凌韧, 等. 采用多通道直冷板的两相循环冷却系统实验研究[J]. 制冷学报, 2021, 42(6): 21-27. |
YANG Wenliang, FANG Yidong, HU Lingren, et al. Experimental investigation on two-phase circulation cooling system with multi-channel direct cooling plate[J]. Journal of Refrigeration, 2021, 42(6): 21-27. | |
29 | CHEN Xiaoxuan, DING Tao, CAO Hanwen, et al. Flow boiling heat transfer mechanisms and flow characteristics of pump-driven two-phase flow systems used in data center cooling[J]. Applied Thermal Engineering, 2023, 220: 119642. |
116 | WANG Jing, LIN Yongshuang, ZHU Kunyuan, et al. Design and performance analysis of server water-cooled heat pipe cooling system[J]. Science and Technology Innovation Herald, 2015, 12(5): 58-59. |
117 | 杜雪涛. 水冷型热管散热系统在数据中心的应用研究[D]. 广州: 华南理工大学, 2016. |
DU Xuetao. Research on application of data center cooling system combined heat pipes with water cooling[D]. Guangzhou: South China University of Technology, 2016. | |
118 | 王玉珏. 水冷型热管散热器在服务器中的应用研究及性能优化[D]. 广州: 华南理工大学, 2015. |
WANG Yujue. Application and performance optimization of water-cooling heat pipe radiator in the server[D]. Guangzhou: South China University of Technology, 2015. | |
119 | 吕云, 赵健勇, 高肃钧, 等. 一种复合平板热管的设计[J]. 中国科技信息, 2018(10): 67-68, 12. |
Yun LYU, ZHAO Jianyong, GAO Sujun, et al. Design of a composite flat heat pipe[J]. China Science and Technology Information, 2018(10): 67-68, 12. | |
120 | 刘帆, 范皓龙, 李帅, 等. 均温板复合微通道液冷板的设计与性能研究[J]. 电子机械工程, 2023, 39(3): 35-39. |
LIU Fan, FAN Haolong, LI Shuai, et al. Design of and performance research on vapor chamber composite microchannel cold plate[J]. Electro-Mechanical Engineering, 2023, 39(3): 35-39. | |
121 | 李维平, 李隆键, 崔文智, 等. 液冷系统中均热板气液相变的热质传输模拟[J]. 哈尔滨工业大学学报, 2022, 54(7): 96-103. |
LI Weiping, LI Longjian, CUI Wenzhi, et al. Numerical simulation of the heat and mass transfer inside a vapor chamber in a liquid cooling system[J]. Journal of Harbin Institute of Technology, 2022, 54(7): 96-103. | |
122 | 李维天, 张育栋, 董阳阳. 液冷机箱内部模块的散热技术分析[J]. 舰船电子工程, 2022, 42(8): 208-211. |
LI Weitian, ZHANG Yudong, DONG Yangyang. Analysis on the heat dissipation technology of the internal modules of the liquid-cooled chassis[J]. Ship Electronic Engineering, 2022, 42(8): 208-211. | |
123 | 余俊声, 朱晔, 李乾坤, 等. 升降热流条件下的脉动热管性能[J]. 化工进展, 2023, 42(3): 1178-1186. |
YU Junsheng, ZHU Ye, LI Qiankun, et al. Performance of pulsating heat pipe with rising and declining heat flux[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1178-1186. | |
124 | 田绅, 马翠玲, 陈雨虹, 等. 嵌入热管强化相变蓄冷板释冷性能的研究及优化[J]. 制冷学报, 2021, 42(6): 114-120. |
TIAN Shen, MA Cuiling, CHEN Yuhong, et al. Investigation and optimization of discharging performance enhancement of phase change cold storage panel using embedded heat pipes[J]. Journal of Refrigeration, 2021, 42(6): 114-120. | |
125 | LIAO Junyuan, YANG Chunxin, YANG Han. Experimental study and information entropy analysis on periodic performance of a PCM thermal management system for blade servers in data centers[J]. International Journal of Thermal Sciences, 2023, 188: 108216. |
126 | HUANG Bin, ZHENG Ziao, LU Gaofeng, et al. Design and experimental investigation of a PCM based cooling storage unit for emergency cooling in data center[J]. Energy and Buildings, 2022, 259: 111871. |
127 | WANG Jixiang, QIAN Jian, WANG Ni, et al. A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling[J]. Renewable Energy, 2023, 213: 75-85. |
128 | 赵兰, 王国珍. 相变蓄热复合传热强化技术综述[J]. 储能科学与技术, 2022, 11(11): 3534-3547. |
ZHAO Lan, WANG Guozhen. Research progress on composite heat transfer enhancement technology of phase change heat storage system[J]. Energy Storage Science and Technology, 2022, 11(11): 3534-3547. | |
129 | 张媛琳, 谭宽. 相变储能系统在数据中心中的应用[J]. 信息与电脑(理论版), 2019, 31(22): 6-7. |
ZHANG Yuanlin, TAN Kuan. Application on phase change energy storage system in IDC[J]. China Computer & Communication, 2019, 31(22): 6-7. | |
30 | 曾乐业, 李翔. 电子设备热管冷板优化设计及试验研究[J]. 装备环境工程, 2020, 17(1): 109-113. |
ZENG Leye, LI Xiang. Optimization design and experimental study on heat pipe cold plate for electronic equipment[J]. Equipment Environmental Engineering, 2020, 17(1): 109-113. | |
31 | 陈立德. 数据机房阵列平板微热管强化散热及余热回收研究[D]. 衡阳: 南华大学, 2022. |
CHEN Lide. Research on enhanced heat dissipation and waste heat recovery with micro heat pipes flat array in data room[D]. Hengyang: University of South China, 2022. | |
32 | 董德胜, 曹勇, 刘海静, 等. 一种高均匀度均温板系统设计及测试[J]. 环境技术, 2023, 41(2): 123-127. |
DONG Desheng, CAO Yong, LIU Haijing, et al. Design and test of a high uniformity temperature equalizing plate system[J]. Environmental Technology, 2023, 41(2): 123-127. | |
33 | LI Chenxi, LI Ji. Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high power server CPUs[J]. Thermal Science and Engineering Progress, 2023, 37: 101542. |
34 | 杨文龙, 徐英东, 于鑫, 等. 关于大数据时代数据中心散热技术的研究[J]. 电子技术与软件工程, 2022(20): 125-128. |
YANG Wenlong, XU Yingdong, YU Xin, et al. Research on heat dissipation technology of data center in the era of big data[J]. Electronic Technology & Software Engineering, 2022(20): 125-128. | |
35 | CHOI Jeehoon, JEONG Minjoong, YOO Junghyun, et al. A new CPU cooler design based on an active cooling heatsink combined with heat pipes[J]. Applied Thermal Engineering, 2012, 44: 50-56. |
36 | 向金伟. 基于数据中心散热的上部回液式微通道平板环路热管实验研究[D]. 广州: 广东工业大学, 2022. |
XIANG Jinwei. Experimental study of upper liquid-returned micro-channel plate loop heat pipe based on data center cooling[D]. Guangzhou: Guangdong University of Technology, 2022. | |
130 | LIU Lijun, ZHANG Quan, ZHAI Zhiqiang, et al. A simplified method to simulate tube-in-tank latent thermal energy storage with fin-enhanced phase change material in data center[J]. Journal of Energy Storage, 2022, 55: 105757. |
131 | 张宇迪, 章学来, 纪珺, 等. 基于热管技术的相变材料强化传热技术进展[J]. 功能材料, 2019, 50(1): 1056-1066. |
ZHANG Yudi, ZHANG Xuelai, JI Jun, et al. Progress in heat transfer enhancement of phase change materials[J]. Journal of Functional Materials, 2019, 50(1): 1056-1066. | |
132 | MA Xiaowei, ZHANG Quan, ZOU Sikai. An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center[J]. Energy, 2022, 253: 123946. |
133 | MOTEVALIZADEH Morteza, ROOBERAHAN Amin, SANAEE NAMAGHI Mohammad, et al. Cooling enhancement of portable computers processor by a heat pipe assisted with phase change materials[J]. Journal of Energy Storage, 2022, 56: 106074. |
134 | 朱心慧. 基于液冷系统的数据中心能效优化研究[D]. 武汉: 华中科技大学, 2021. |
ZHU Xinhui. Energy efficiency optimization of datacenters with liquid cooling systems[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
135 | ZHOU Haojie, TIAN Tong, WANG Xinyue, et al. Combining looped heat pipe and thermoelectric generator module to pursue data center servers with possible power usage effectiveness less than 1[J]. Applied Energy,2023,332: 120539. |
136 | 李秀慧. 基于微流道的三维集成电路热管理研究[D]. 西安: 西安电子科技大学, 2018. |
LI Xiuhui. Thermal management research of three-dimensional integrated circuit with micro-channels[D]. Xi’an: Xidian University, 2018. | |
137 | 郝斌, 张建新. 3ω法表征热导率研究进展[J]. 半导体技术, 2022, 47(6): 429-436. |
HAO Bin, ZHANG Jianxin. Research progress on thermal conductivity characterization by 3ω method[J]. Semiconductor Technology, 2022, 47(6): 429-436. | |
37 | 陈思晗. 数据中心用热管的流动换热特性研究[D]. 武汉: 华中科技大学, 2020. |
CHEN Sihan. Research on flow and heat transfer characteristics of heat pipe in data center[D]. Wuhan: Huazhong University of Science & Technology, 2020. | |
38 | 黄俊, 侍书成, 龚骁敏. 一种用于高热功率密闭计算机散热的环路热管系统[J]. 电子机械工程, 2017, 33(4): 42-47. |
HUANG Jun, SHI Shucheng, GONG Xiaomin. A loop heat pipe System for heat dissipation of computers with closed chassis and high thermal power[J]. Electro-Mechanical Engineering, 2017, 33(4): 42-47. | |
39 | ZHANG Ying, LI Chao, PAN Minqiang. Design and performance research of integrated indirect liquid cooling system for rack server[J]. International Journal of Thermal Sciences, 2023, 184: 107951. |
40 | SHANG Fumin, YANG Qingjing, FAN Shilong, et al. Experimental study on novel pulsating heat pipe radiator for horizontal CPU cooling under different wind speeds[J]. Thermal Science, 2022, 26(1 Part B): 449-462. |
41 | 申利梅, 季俊杰, 罗凡, 等. 微通道冷却非均匀热通量芯片的流动换热特性[J]. 中南大学学报(自然科学版), 2021, 52(6): 1809-1816. |
SHEN Limei, JI Junjie, LUO Fan, et al. Flow and heat transfer characteristics of micro-channel cooling chip at non-uniform heat flux[J]. Journal of Central South University (Science and Technology), 2021, 52(6): 1809-1816. | |
42 | ELLIOTT J W, LEBON M T, ROBINSON A J. Optimising integrated heat spreaders with distributed heat transfer coefficients: A case study for CPU cooling[J]. Case Studies in Thermal Engineering, 2022, 38: 102354. |
43 | GHASEMI S E, RANJBAR A A, HOSEINI M J, et al. Design optimization and experimental investigation of CPU heat sink cooled by alumina-water nanofluid[J]. Journal of Materials Research and Technology, 2021, 15: 2276-2286. |
44 | XIE Gongnan, SHEN Han, WANG Chichuan. Parametric study on thermal performance of microchannel heat sinks with internal vertical Y-shaped bifurcations[J]. International Journal of Heat and Mass Transfer, 2015, 90: 948-958. |
45 | CHEN Tiantian, QI Cong, TANG Jinghua, et al. Numerical and experimental study on optimization of CPU system cooled by nanofluids[J]. Case Studies in Thermal Engineering, 2021, 24: 100848. |
46 | 王宏标. 间接液冷散热水冷板的数值模拟与优化设计[D]. 济南: 山东大学, 2021. |
WANG Hongbiao. Numerical simulation and optimization design of cooling plate in indirect liquid cooling system[D]. Jinan: Shandong University, 2021. | |
47 | 王彬, 诸凯, 王雅博, 等. 翅柱式水冷CPU芯片散热器冷却与流动性能[J]. 化工进展, 2017, 36(6): 2031-2037. |
WANG Bin, ZHU Kai, WANG Yabo, et al. Experimental study on cooling and flow performance of water-cooling radiator with different pin-fins structures for CPU cooling[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2031-2037. | |
48 | SIAHCHEHREHGHADIKOLAEI Soheil, GHOLINIA M, GHADIKOLAEI S S, et al. A CFD modeling of CPU cooling by eco-friendly nanofluid and fin heat sink passive cooling techniques[J]. Advanced Powder Technology, 2022, 33(11): 103813. |
49 | WANG Jin, YU Kai, YE Mingzheng, et al. Effects of pin fins and vortex generators on thermal performance in a microchannel with Al2O3 nanofluids[J]. Energy, 2022, 239: 122606. |
50 | FENG Zhenfei, JIANG Ping, ZHENG Siyao, et al. Experimental and numerical investigations on the effects of insertion-type longitudinal vortex generators on flow and heat transfer characteristics in square minichannels[J]. Energy, 2023, 278: 127855. |
51 | Ananta Kumar DAS, HIREMATH Somashekhar S. Multi-objective optimization of a novel butterfly-wing vortex generator fabricated in a rectangular microchannel based on CFD and NSGA-Ⅱ genetic algorithm[J]. Applied Thermal Engineering, 2023, 234: 121187. |
52 | LI Zhenzhou, FENG Zhenfei, ZHANG Qingyuan, et al. Thermal-hydraulic performance and multi-objective optimization using ANN and GA in microchannels with double delta-winglet vortex generators[J]. International Journal of Thermal Sciences, 2023, 193: 108489. |
53 | NAKHCHI M E, ESFAHANI J A. CFD approach for two-phase CuO nanofluid flow through heat exchangers enhanced by double perforated louvered strip insert[J]. Powder Technology, 2020, 367: 877-888. |
54 | KUMAR Sunil, MAITHANI Rajesh, KUMAR Anil. Optimal design parameter selection for performance of alumina nano-material particles and turbulence promotors in heat exchanger: An AHP-TOPSIS technique[J]. Materials Today: Proceedings, 2021, 43: 3152-3155. |
55 | 毛春林, 刘汉敏, 孙健, 等. 芯片封装均温板壳体的传热特性研究[J]. 制冷学报, 2022, 43(1): 138-144. |
MAO Chunlin, LIU Hanmin, SUN Jian, et al. Research on heat transfer characteristics of vapor chamber integrated heat spreader for chip package[J]. Journal of Refrigeration, 2022, 43(1): 138-144. | |
56 | 魏进家, 刘斌, 张永海. 常/微重力下微结构表面强化沸腾换热研究进展[J]. 化工进展, 2019, 38(1): 14-29. |
WEI Jinjia, LIU Bin, ZHANG Yonghai. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 14-29. | |
57 | GORE Sandip S, DHOBLE A S. Server processor heat sink analysis and modifications to improve its thermal performance[J]. Materials Today: Proceedings, 2023, 82: 208-216. |
58 | WU Hexi, WU Xinye, FENG Li, et al. Cooling a central processing unit by installing a mini channel and flowing nanofluid, and investigating economic efficiency[J]. Case Studies in Thermal Engineering, 2022, 30: 101719. |
59 | ZHANG Yin, LONG Enshen, ZHANG Mingshan. Experimental study on heat sink with porous copper as conductive material for CPU cooling[J]. Materials Today: Proceedings, 2018, 5(7): 15004-15009. |
60 | LIU Yan, MANSIR Ibrahim B, DAHARI M, et al. Improvement of cooling of a high heat flux CPU by employing a cooper foam and NEPCM/water suspension[J]. Journal of Energy Storage, 2022, 55: 105682. |
[1] | ZHANG Tianhao, LI Shuangxi, JIA Xiangji, HU Dingguo, CUI Ruizhuo, LI Shicong. Analysis of the effect of thermal deformation and friction wear of reinforced DLC film on the end face of high-speed mechanical seals [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 121-133. |
[2] | MAO Ningxuan, WAN Xiaowei, JU Jie, HU Yanjie, JIANG Hao. Numerical simulation and structural optimization of flow field in industrial gas-solid fluidized beds based on CFD-PBM [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 13-20. |
[3] | ZHANG Qing, HUANG Lihao, TAO Leren, ZHU Tianyi, JIN Yunfei. Experimental on the flow boiling heat transfer characteristics of R513A insides horizontal tubes with different thread structures [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 134-143. |
[4] | SU Yao, CHEN Zhanxiu, YANG Li, XING Hewei, HU Hecang, LI Yuanhua. Effect of heat source temperature on flow heat transfer in asymmetric nanochannels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 144-153. |
[5] | YIN Shaowu, HUANG Ruoxiao, ZAN Xiaojun, TONG Lige, LIU Chuanping, WANG Li. Design of phase-change heat and energy storage system based on CPCM hexagonal and simulation of heat storage and release [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 243-254. |
[6] | YANG Huimin, DU Jiali, QUAN Yawen, WU Shengxiao, JIN Jiao, WU Feng. CFD simulation investigation of heat transfer characteristics in a downer bed with side nozzle [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 32-42. |
[7] | DU Xiaocong, XIN Chunfu, ZHAO Yu. Performance evaluation of composite phase change materials and phase change modified asphalt for road use [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 419-430. |
[8] | ZHAO Jilong, MA Yinghua, HUANG Guoqing, SHEN Mingyu, CHEN Hongxia. Optimization design of cesium heat pipe based on orthogonal test [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 94-105. |
[9] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
[10] | SUN Qichao, NIE Meihua, WU Lianying, HU Yangdong. Optimal design and scheduling of integrated wind-photovoltaic-storage hydropower cogeneration system [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4882-4891. |
[11] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
[12] | ZHENG Qingyu, JIN Guangyuan, FENG Wenkai, ZHU Zhengshan, ZHOU Yifan, TENG Houchang, LI Zhenfeng, SONG Chunfang, SONG Feihu, LI Jing. Numerical analysis of mixed characteristics of chaotic C-type geometric flows coupling electromagnetic thermal characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4262-4272. |
[13] | PAN Hanting, XU Hongtao, XU Duo, LUO Zhuqing. Analysis of thermal insulation characteristics of lithium-ion batteries based on phase change materials under low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4333-4341. |
[14] | JIANG Jingzhi, SHAO Guowei, CUI Haiting, LI Hongtao, YANG Qi. Analysis of enhanced heat transfer characteristics of finned triplex-tube phase change heat storage unit [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4210-4221. |
[15] | WEN Guiye, JIAO Feng, HE Yongqing. Analysis of ferrofluids-nonferrofluids interface instability in microchannels under magnetic field [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3787-3797. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |