Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6184-6194.DOI: 10.16085/j.issn.1000-6613.2023-1741
• Industrial catalysis • Previous Articles
LI Menghan1(), SU Tongming1, QIN Zuzeng1(), JI Hongbing1,2()
Received:
2023-10-07
Revised:
2024-04-07
Online:
2024-12-07
Published:
2024-11-15
Contact:
QIN Zuzeng, JI Hongbing
李孟函1(), 苏通明1, 秦祖赠1(), 纪红兵1,2()
通讯作者:
秦祖赠,纪红兵
作者简介:
李孟函(1998—),女,硕士研究生,研究方向为工业催化。E-mail:lmh799648213@163.com。
基金资助:
CLC Number:
LI Menghan, SU Tongming, QIN Zuzeng, JI Hongbing. Effect of Zr on the structure and the hydrogenation properties for cinnamaldehyde of Ni/Ti3C2 catalyst[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6184-6194.
李孟函, 苏通明, 秦祖赠, 纪红兵. Zr对Ni/Ti3C2催化剂结构及催化肉桂醛选择加氢的影响[J]. 化工进展, 2024, 43(11): 6184-6194.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1741
样品 | 比表面积/m2·g-1 | 孔体积/10-2cm3·g-1 | 平均孔径/nm |
---|---|---|---|
Ti3C2 | 4.7 | 1.83 | 12.17 |
10Ni/Ti3C2 | 9.6 | 3.63 | 11.84 |
10Ni5Zr/Ti3C2 | 51.6 | 10.73 | 6.64 |
10Ni10Zr/Ti3C2 | 132.8 | 15.63 | 3.48 |
10Ni15Zr/Ti3C2 | 102.2 | 9.81 | 2.69 |
样品 | 比表面积/m2·g-1 | 孔体积/10-2cm3·g-1 | 平均孔径/nm |
---|---|---|---|
Ti3C2 | 4.7 | 1.83 | 12.17 |
10Ni/Ti3C2 | 9.6 | 3.63 | 11.84 |
10Ni5Zr/Ti3C2 | 51.6 | 10.73 | 6.64 |
10Ni10Zr/Ti3C2 | 132.8 | 15.63 | 3.48 |
10Ni15Zr/Ti3C2 | 102.2 | 9.81 | 2.69 |
催化剂 | 时间/min | CCAL/% | SHCAL/% | YHCAL/% |
---|---|---|---|---|
10Ni/Ti3C2 | 50 | 92.57 | 91.15 | 84.38 |
10Ni5Zr/Ti3C2 | 10 | 100.00 | 25.31 | 25.31 |
10Ni10Zr/Ti3C2 | 50 | 98.34 | 94.81 | 93.24 |
10Ni15Zr/Ti3C2 | 60 | 27.41 | 87.32 | 23.93 |
催化剂 | 时间/min | CCAL/% | SHCAL/% | YHCAL/% |
---|---|---|---|---|
10Ni/Ti3C2 | 50 | 92.57 | 91.15 | 84.38 |
10Ni5Zr/Ti3C2 | 10 | 100.00 | 25.31 | 25.31 |
10Ni10Zr/Ti3C2 | 50 | 98.34 | 94.81 | 93.24 |
10Ni15Zr/Ti3C2 | 60 | 27.41 | 87.32 | 23.93 |
1 | LI Rongrong, YAO Wubing, JIN Yanxian, et al. Selective hydrogenation of the C ̿ C bond in cinnamaldehyde over an ultra-small Pd-Ag alloy catalyst[J]. Chemical Engineering Journal, 2018, 351: 995-1005. |
2 | HAN Shiying, LIU Yunfei, LI Jiang, et al. Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde[J]. Catalysts, 2018, 8(5): 200. |
3 | YANG Xu, WU Liangpeng, DU Li, et al. High performance Pd catalyst using silica modified titanate nanotubes (STNT) as support and its catalysis toward hydrogenation of cinnamaldehyde at ambient temperature[J]. RSC Advances, 2014, 4(108): 63062-63069. |
4 | Dipak DAS, Kamalesh PAL, LLORCA Jordi, et al. Chemoselective hydrogenation of cinnamaldehyde at atmospheric pressure over combustion synthesized Pd catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(1): 135-153. |
5 | ZHAO Yuan, LIU Mingming, FAN Binbin, et al. Pd nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for the selective hydrogenation of cinnamaldehyde[J]. Catalysis Communications, 2014, 57: 119-123. |
6 | YU Jianyan, YAN Li, TU Gaomei, et al. Magnetically responsive core-shell Pd/Fe3O4@C composite catalysts for the hydrogenation of cinnamaldehyde[J]. Catalysis Letters, 2014, 144(12): 2065-2070. |
7 | FUJIWARA Seika, TAKANASHI Naoto, NISHIYABU Ryuhei, et al. Boronate microparticle-supported nano-palladium and nano-gold catalysts for chemoselective hydrogenation of cinnamaldehyde in environmentally preferable solvents[J]. Green Chemistry, 2014, 16(6): 3230-3236. |
8 | XU Hailong, CHEN Miaomiao, JI Min. Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde[J]. Catalysis Today, 2022, 402: 52-59. |
9 | CUI Haishuai, ZHONG Linhao, LV Yang, et al. A facile synthesis of in-situ formed amorphous zirconia catalysts for efficient transfer hydrogenation of unsaturated aldehydes[J]. Fuel, 2022, 317: 123551. |
10 | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7):3824-3833. |
WANG Yingjie, ZHU Xinli. Preparation of highly dispersed Ni-Cu/SiO2 by sol-gel method to promote direct deoxygenation of m-cresol to toluene[J]. Chemical Industry and Engineering Progress, 2024, 43(7):3824-3833. | |
11 | 万成凤, 李志达, 张春月, 等. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6):3232-3239. |
WAN Chengfeng, LI Zhida, ZHANG Chunyue, et al. MXene-loaded CoP nanorods for efficient electrocatalytic decomposition of water to produce hydrogen[J]. Chemical Industry and Engineering Progress, 2024, 43(6):3232-3239. | |
12 | YUAN Zhenluo, ZHANG Dafeng, FAN Guangxin, et al. Synergistic effect of CeF3 nanoparticles supported on Ti3C2 MXene for catalyzing hydrogen storage of NaAlH4 [J]. ACS Applied Energy Materials, 2021, 4(3): 2820-2827. |
13 | LIU Anmin, YANG Qiyue, REN Xuefeng, et al. Two-dimensional CuAg/Ti3C2 catalyst for electrochemical synthesis of ammonia under ambient conditions: A combined experimental and theoretical study[J]. Sustainable Energy & Fuels, 2020, 4(10): 5061-5071. |
14 | LI Menghan, LUO Xuan, SU Tongming, et al. NiZr/N-doped TiO2/Ti3C2 catalyst for the selective hydrogenation of cinnamaldehyde: Effect of N-doping of TiO2 [J]. ChemistrySelect, 2023, 8(48): e202303437. |
15 | CHEN Liuyun, HUANG Kelin, XIE Qingruo, et al. The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene[J]. Catalysis Science & Technology, 2021, 11(4): 1602-1614. |
16 | GAO Han, ZHAO Binxia, LUO Jinchao, et al. Fe-Ni-Al pillared montmorillonite as a heterogeneous catalyst for the catalytic wet peroxide oxidation degradation of orange acid Ⅱ: Preparation condition and properties study[J]. Microporous and Mesoporous Materials, 2014, 196: 208-215. |
17 | ZHANG Guangcheng, FAN Guoli, YANG Lan, et al. Tuning surface-interface structures of ZrO2 supported copper catalysts by in situ introduction of indium to promote CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2020, 605: 117805. |
18 | KE Tao, SHEN Shuyi, RAJAVEL Krishnamoorthy, et al. In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2021, 402: 124066. |
19 | LI Hui, HAO Yubao, LU Haiqiang, et al. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol-gel method[J]. Applied Surface Science, 2015, 344: 112-118. |
20 | ZHENG Rui, LI Chunhu, HUANG Kelei, et al. TiO2/Ti3C2 intercalated with g-C3N4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N2 selectivity in aqueous solution[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2518-2531. |
21 | SU Tongming, HOOD Zachary D, NAGUIB Michael, et al. Monolayer Ti3C2T x as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2 [J]. ACS Applied Energy Materials, 2019, 2(7): 4640-4651. |
22 | HE Jun, LIU Xiaoyi, DENG Yonghe, et al. Improved magnetic loss and impedance matching of the FeNi-decorated Ti3C2T x MXene composite toward the broadband microwave absorption performance[J]. Journal of Alloys and Compounds, 2021, 862: 158684. |
23 | WANG Fei, BI Yanshuai, CHEN Nan, et al. In-situ synthesis of Ni nanoparticles confined within SiO2 networks with interparticle mesopores with enhanced selectivity for cinnamaldehyde hydrogenation[J]. Chemical Physics Letters, 2018, 711: 152-155. |
24 | WU Zhaoxuan, YANG Bing, MIAO Shu, et al. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane[J]. ACS Catalysis, 2019, 9(4): 2693-2700. |
25 | YANG Chao, TAN Qiuyan, LI Qin, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea[J]. Applied Catalysis B: Environmental, 2020, 268: 118738. |
26 | HUANG Kelei, LI Chunhu, ZHANG Xiuli, et al. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution[J]. Green Energy & Environment, 2023, 8(1): 233-245. |
27 | HUANG Kelei, LI Chunhu, MENG Xiangchao. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2020, 580: 669-680. |
28 | ROMERO-SÁEZ M, DONGIL A B, BENITO N, et al. CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies[J]. Applied Catalysis B: Environmental, 2018, 237: 817-825. |
29 | GAO Xueying, YU Xin, PENG Lincai, et al. Magnetic Fe3O4 nanoparticles and ZrO2-doped mesoporous MCM-41 as a monolithic multifunctional catalyst for γ-valerolactone production directly from furfural[J]. Fuel, 2021, 300: 120996. |
30 | Mehmet AKÇAY. The surface acidity and characterization of Fe-montmorillonite probed by in situ FT-IR spectroscopy of adsorbed pyridine[J]. Applied Catalysis A: General, 2005, 294(2): 156-160. |
31 | WU Jianfeng, SU Tongming, JIANG Yuexiu, et al. In situ DRIFTS study of O3 adsorption on CaO, γ-Al2O3, CuO, α-Fe2O3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde[J]. Applied Surface Science, 2017, 412: 290-305. |
32 | TRAVERT Arnaud, VIMONT Alexandre, LAVALLEY Jean-Claude. An example of misinterpretation of IR spectra of adsorbed species due to gas phase H2O: Comment on “The surface acidity and characterization of Fe-montmorillonite probed by in situ FT-IR spectroscopy of adsorbed pyridine” [Appl. Catal. A 294 (2005) 156-160][J]. Applied Catalysis A: General, 2006, 302(2): 333-334. |
33 | YANG Lan, JIANG Zhongshan, FAN Guoli, et al. The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral[J]. Catalysis Science & Technology, 2014, 4(4): 1123-1131. |
34 | CHMIELARZ Lucjan, Piotr KUŚTROWSKI, ZBROJA Małorzata, et al. SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co Part II. Temperature programmed studies[J]. Applied Catalysis B: Environmental, 2004, 53(1): 47-61. |
35 | WANG Xiaofeng, LIANG Xinhua, GENG Peng, et al. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts[J]. ACS Catalysis, 2020, 10(4): 2395-2412. |
36 | LIU Hongli, LI Zhong, LI Yingwei. Chemoselective hydrogenation of cinnamaldehyde over a pt-lewis acid collaborative catalyst under ambient conditions[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1487-1497. |
[1] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[2] | LI Shuaizhe, NIE Yichen, PHIDJAVARD Keomeesay, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research progress on non-precious metal-catalyzed hydrogenation and deoxygenation of biomass to produce hydrocarbon-based biofuels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 225-242. |
[3] | ZHANG Hao, LIU Shiyu, SHEN Weihua, FANG Yunjin. Dehydration of urea to cyanamide with Ca-ZSM-5 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 365-373. |
[4] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
[5] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[6] | ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392. |
[7] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[8] | WANG Yufei, JIA Yu, ZHANG Yisheng, XUE Wei, LI Fang, WANG Yanji. Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4421-4431. |
[9] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
[10] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
[11] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[12] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[13] | YANG Xin, ZHONG Chengwei, YANG Zhishan, ZHU Weiwei, WANG Wenhao, YU Jiang. Catalytic remediation of polycyclic aromatic hydrocarbons contaminated soil by synthetic siderite and its derivatives [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4118-4127. |
[14] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[15] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |