Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 5925-5935.DOI: 10.16085/j.issn.1000-6613.2022-0085
• Materials science and technology • Previous Articles Next Articles
CHEN Jing1(), SHEN Yanqin1,2(), YAO Yijun1,2,3, HU Chengmeng1, WU Hailiang1,2
Received:
2022-01-12
Revised:
2022-03-09
Online:
2022-11-28
Published:
2022-11-25
Contact:
SHEN Yanqin
陈静1(), 沈艳琴1,2(), 姚一军1,2,3, 胡成蒙1, 武海良1,2
通讯作者:
沈艳琴
作者简介:
陈静(1997—),女,硕士研究生,研究方向为功能性纺织材料。E-mail: cj15091752721@163.com。
基金资助:
CLC Number:
CHEN Jing, SHEN Yanqin, YAO Yijun, HU Chengmeng, WU Hailiang. Research progress of superabsorbent polymer materials[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5925-5935.
陈静, 沈艳琴, 姚一军, 胡成蒙, 武海良. 超吸水材料的研究进展[J]. 化工进展, 2022, 41(11): 5925-5935.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0085
种类 | 原料 | 引发方式 | 引发剂 | 交联剂 | 添加物 | 吸液倍率/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
合成类聚合物 | AA | 辐射引发(γ射线) | APS | MBA | — | 1815(水) | [ |
AA、AM | 氧化-还原引发 | APS-NaHSO3 | MBA | — | 1617(水),189(生理盐水) | [ | |
热引发(70℃) | APS | 蒙脱石 | 1024(水),56(生理盐水) | [ | |||
蛭石 | 1232(水),89 (生理盐水) | [ | |||||
AA-AM | 热引发(56℃) | H2O2 | MBA | Al2(SO4)3 | 60(生理盐水) | [ | |
AM | 氧化-还原引发 | KPS-NaHSO3 | MBA | — | 70(水) | [ | |
辐射引发 | — | 700(水) | [ | ||||
AMPS | 热引发(75℃) | APS | MBA | 氧化石墨烯 | 768(水),115(生理盐水) | [ | |
AA、AMPS | 辐射引发(γ射线) | APS | MBA | — | 4310(水),269(人造血) 288(合成尿) | [ | |
天然高分子 接枝-交联聚合物 | SA、AA | 辐射引发(60Co射线) | — | MBA | — | 579(水) | [ |
SS、AA | 热引发 | APS | MBA | — | 91~181(水),19(0.5%生理盐水) | [ | |
高岭土/蒙脱石 | 245(水),83(生理盐水) | [ | |||||
AA、AM、HA | 热引发(70℃) | KPS | MBA | — | 1002(水),183(生理盐水) | [ | |
AA、AM、CMC | 辐射引发(微波辐射) | KPS-NaHSO3 | MBA | — | 1520(水),165(生理盐水) | [ | |
天然高分子 交联聚合物 | CMC、甲壳素 | — | — | ECH | — | 1300(水),950(尿素溶液),350(生理盐水),355(合成尿) | [ |
CMCNa、HEC | — | — | DVS | — | 420(水),80.00(人工尿) | [ | |
CMCNa、HEC | — | — | WSC | — | 90(水) | [ | |
CMCNa、HEC | — | — | CA | — | 900(水) | [ |
种类 | 原料 | 引发方式 | 引发剂 | 交联剂 | 添加物 | 吸液倍率/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
合成类聚合物 | AA | 辐射引发(γ射线) | APS | MBA | — | 1815(水) | [ |
AA、AM | 氧化-还原引发 | APS-NaHSO3 | MBA | — | 1617(水),189(生理盐水) | [ | |
热引发(70℃) | APS | 蒙脱石 | 1024(水),56(生理盐水) | [ | |||
蛭石 | 1232(水),89 (生理盐水) | [ | |||||
AA-AM | 热引发(56℃) | H2O2 | MBA | Al2(SO4)3 | 60(生理盐水) | [ | |
AM | 氧化-还原引发 | KPS-NaHSO3 | MBA | — | 70(水) | [ | |
辐射引发 | — | 700(水) | [ | ||||
AMPS | 热引发(75℃) | APS | MBA | 氧化石墨烯 | 768(水),115(生理盐水) | [ | |
AA、AMPS | 辐射引发(γ射线) | APS | MBA | — | 4310(水),269(人造血) 288(合成尿) | [ | |
天然高分子 接枝-交联聚合物 | SA、AA | 辐射引发(60Co射线) | — | MBA | — | 579(水) | [ |
SS、AA | 热引发 | APS | MBA | — | 91~181(水),19(0.5%生理盐水) | [ | |
高岭土/蒙脱石 | 245(水),83(生理盐水) | [ | |||||
AA、AM、HA | 热引发(70℃) | KPS | MBA | — | 1002(水),183(生理盐水) | [ | |
AA、AM、CMC | 辐射引发(微波辐射) | KPS-NaHSO3 | MBA | — | 1520(水),165(生理盐水) | [ | |
天然高分子 交联聚合物 | CMC、甲壳素 | — | — | ECH | — | 1300(水),950(尿素溶液),350(生理盐水),355(合成尿) | [ |
CMCNa、HEC | — | — | DVS | — | 420(水),80.00(人工尿) | [ | |
CMCNa、HEC | — | — | WSC | — | 90(水) | [ | |
CMCNa、HEC | — | — | CA | — | 900(水) | [ |
1 | CHEN Jingying, WU Jing, RAFFA Patrizio, et al. Superabsorbent polymers: from long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives[J]. Progress in Polymer Science, 2022, 125: 101475. |
2 | RAONBY B G. Highly absorbing graft copolymerisate of starch and acrylonitrile: PCT/SE1984/000127[P]. 1984-04-09. |
3 | ZOHURIAAN-MEHR Mohammad J, KABIRI Kourosh. Superabsorbent polymer materials: a review[J]. Iranian Polymer Journal, 2008, 17(6): 451-476. |
4 | 叶枫, 谷雨, 韩斐, 等. 辐射接枝交联制备海藻酸钠系高吸水树脂[J]. 核技术, 2020, 43(12): 42-50. |
YE Feng, GU Yu, HAN Fei, et al. Preparation of sodium alginate-based super absorbent polymer by radiation grafting and crosslinking[J]. Nuclear Techniques, 2020, 43(12): 42-50. | |
5 | 马砺, 刘西西, 周莎莎, 等. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22): 22172-22177. |
MA Li, LIU Xixi, ZHOU Shasha, et al. Preparation and performance test of starch-based grafted sodium acrylate composite super absorbent resin material[J]. Materials Reports, 2021, 35(22): 22172-22177. | |
6 | 刘忠阳, 李艳梅, 贺龙强. 腐植酸型高吸水性树脂的制备及农业应用研究[J]. 化工新型材料, 2021, 49(1): 255-258. |
LIU Zhongyang, LI Yanmei, HE Longqiang. Study on synthesis and agricultural application of superabsorbent resin base on humic acid[J]. New Chemical Materials, 2021, 49(1): 255-258. | |
7 | 来水利, 高莹华, 罗娜娜. 单模聚焦微波辐射合成P(AA/AM)/有机蒙脱土高吸水性树脂的研究[J]. 中国塑料, 2012, 26(9): 32-36. |
LAI Shuili, GAO Yinghua, LUO Nana. Synthesis of P(AA-AM)/OMMT superabsorbent resin under signal-mode focusing microwave irradiation[J]. China Plastics, 2012, 26(9): 32-36. | |
8 | KAKONKE Grace, TESFAYE Tamrat, SITHOLE Bruce, et al. Production and characterization of cotton-chicken feather fibres blended absorbent fabrics[J]. Journal of Cleaner Production, 2020, 243: 118508. |
9 | 谢婉婷, 刘其海, 贾振宇, 等. 超吸水改性棉纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4): 48-54. |
XIE Wanting, LIU Qihai, JIA Zhenyu, et al. Preparation and performance of super absorbent modified cotton fiber membrane[J]. Journal of Textile Research, 2021, 42(4): 48-54. | |
10 | YU Zhicai, SURYAWANSHI Abhijeet, HE Hualing, et al. Preparation and characterisation of fire-resistant PNIPAAm/SA/AgNP thermosensitive network hydrogels and laminated cotton fabric used in firefighter protective clothing[J]. Cellulose, 2020, 27(9): 5391-5406. |
11 | BALDINO Lucia, ZUPPOLINI Simona, CARDEA Stefano, et al. Production of biodegradable superabsorbent aerogels using a supercritical CO2 assisted drying[J]. The Journal of Supercritical Fluids, 2020, 156: 104681. |
12 | 于志财, 刘金如, 何华玲, 等. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(9): 180-186. |
YU Zhicai, LIU Jinru, HE Hualing, et al. Research and application progress in fire retardant fabric based on polymeric hydrogel[J]. Journal of Textile Research, 2021, 42(9): 180-186. | |
13 | 王璐, 丁笑君, 夏馨, 等. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84. |
WANG Lu, DING Xiaojun, XIA Xin, et al. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric[J]. Journal of Textile Research, 2019, 40(10): 79-84. | |
14 | OMIDIAN H, ZOHURIAAN-MEHR M J, KABIRI K, et al. Polymer chemistry attractiveness: synthesis and swelling studies of gluttonous hydrogels in the advanced academic laboratory[J]. Journal of Polymer Materials, 2004, 21(3): 281-292. |
15 | 刘廷栋, 刘京. 高吸水性树脂的吸水机理[J]. 高分子通报, 1994(3): 181-185. |
LIU Tingdong, LIU Jing. Water absorbing mechanisms of high water absorbent resin[J]. Polymer Bulletin, 1994(3): 181-185. | |
16 | DEMITRI C, SCALERA F, MADAGHIELE M, et al. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture[J]. International Journal of Polymer Science, 2013, 2013: 435073. |
17 | TANG Hu, CHEN Han, DUAN Bo, et al. Swelling behaviors of superabsorbent chitin/carboxymethyl cellulose hydrogels[J]. Journal of Materials Science, 2014, 49(5): 2235-2242. |
18 | SANNINO A, MENSITIERI G, NICOLAIS L. Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field[J]. Journal of Applied Polymer Science, 2004, 91(6): 3791-3796. |
19 | DEMITRI Christian, DEL SOLE Roberta, SCALERA Francesca, et al. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid[J]. Journal of Applied Polymer Science, 2008, 110(4): 2453-2460. |
20 | 唐刚, 杜丽媛, 王浩, 等. γ射线辐射制备淀粉基高吸水性树脂[J]. 塑料工业, 2018, 46(2): 15-18. |
TANG Gang, DU Liyuan, WANG Hao, et al. Preparation of starch based superabsorbent resin by gamma ray radiation[J]. China Plastics Industry, 2018, 46(2): 15-18. | |
21 | JIANG Jiaqiao, ZHAO Shu. Acrylic superabsorbents: a meticulous investigation on copolymer composition and modification[J]. Iranian Polymer Journal, 2014, 23(5): 405-414. |
22 | GAO Jinzhang, WANG Aixiang, LI Yan, et al. Synthesis and characterization of superabsorbent composite by using glow discharge electrolysis plasma[J]. Reactive and Functional Polymers, 2008, 68(9): 1377-1383. |
23 | ZHENG Yian, LI Ping, ZHANG Junping, et al. Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites[J]. European Polymer Journal, 2007, 43(5): 1691-1698. |
24 | CHEN Zhenbin, LIU Mingzhu, MA Songmei. Synthesis and modification of salt-resistant superabsorbent polymers[J]. Reactive and Functional Polymers, 2005, 62(1): 85-92. |
25 | XIONG Boya, LOSS Rebeca Dettam, SHIELDS Derrick, et al. Polyacrylamide degradation and its implications in environmental systems[J]. Npj Clean Water, 2018, 1: 17. |
26 | Mohana RAJU K, Padmanabha RAJU M. Synthesis and swelling properties of superabsorbent copolymers[J]. Advances in Polymer Technology, 2001, 20(2): 146-154. |
27 | TANG Yaoji, GUAN Chengdong, LIU Yangwenyi, et al. Preparation and absorption studies of poly(acrylic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid)/graphene oxide superabsorbent composite[J]. Polymer Bulletin, 2019, 76(3): 1383-1399. |
28 | Ahmed AWADALLAH-F, MOSTAFA Tahia B. Synthesis and characterization studies of γ-radiation crosslinked poly(acrylic acid/2-acrylamido-2-methyl propane sulfonic acid) hydrogels[J]. Journal of Polymer Engineering, 2014, 34(5): 459-469. |
29 | 乔宇杭, 王桂萍, 钱石川, 等. 淀粉接枝丙烯酸高吸水树脂制备及性能[J]. 沈阳理工大学学报, 2019, 38(2): 70-74. |
QIAO Yuhang, WANG Guiping, QIAN Shichuan, et al. Preparation and properties of starch-graft-acrylic acid superabsorbent[J]. Journal of Shenyang Ligong University, 2019, 38(2): 70-74. | |
30 | FANG Shixin, WANG Guangjian, LI Pengcheng, et al. Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent[J]. International Journal of Biological Macromolecules, 2018, 115: 754-761. |
31 | WEI Peng, CHEN Weiwei, SONG Qinghua, et al. Superabsorbent hydrogels enhanced by quaternized tunicate cellulose nanocrystals with adjustable strength and swelling ratio[J]. Cellulose, 2021, 28(6): 3723-3732. |
32 | FEKETE Tamás, BORSA Judit, Erzsébet TAKÁCS, et al. Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking[J]. Cellulose, 2014, 21(6): 4157-4165. |
33 | NAKASON Charoen, WOHMANG Toha, KAESAMAN Azizon, et al. Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending[J]. Carbohydrate Polymers, 2010, 81(2): 348-357. |
34 | SHEN Jie, CUI Chang, LI Jian, et al. In situ synthesis of a silver-containing superabsorbent polymer via a greener method based on carboxymethyl celluloses[J]. Molecules 2018, 23(10): 2483. |
35 | 刘玉华, 魏宏亮, 李松茂, 等. 淀粉基水凝胶的研究进展[J]. 化工进展, 2021, 40(12): 6738-6751. |
LIU Yuhua, WEI Hongliang, LI Songmao, et al. Research progress of starch-based hydrogels[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6738-6751. | |
36 | Dipayan DAS, RENGASAMY R S, KUMAR Mritunjay. Liquid sorption behavior of superabsorbent fiber based nonwoven media[J]. Fibers and Polymers, 2013, 14(7): 1165-1171. |
37 | GUPTA Murari Lal, GUPTA Bhuvanesh, OPPERMANN Wilhelm, et al. Surface modification of polyacrylon itrile staple fibers via alkaline hydrolysis for superabsorbent applications[J]. Journal of Applied Polymer Science, 2004, 91(5): 3127-3133. |
38 | 章悦庭, 胡绍华. 高吸水性非织造布的研制[J]. 非织造布, 2000, 8(2): 29-31. |
ZHANG Yueting, HU Shaohua. Development of super absorbent nonwovens[J]. Nonwovens, 2000, 8(2): 29-31. | |
39 | 郝秀阳, 封严. 高吸水纤维的制备方法及应用[J]. 山东纺织科技, 2008, 49(3): 53-56. |
HAO Xiuyang, FENG Yan. The preparation methods and applications of super absorbent fiber[J]. Shandong Textile Science & Technology, 2008, 49(3): 53-56. | |
40 | 邓新华, 孙元, 边栋才, 等. PVA/PAA-AM共混高吸水纤维的微观结构与吸液能力[J]. 精细化工, 2005, 22(3): 177-180. |
DENG Xinhua, SUN Yuan, BIAN Dongcai, et al. Morphology and absorbency of PVA/PAA-AM blend superabsorbent fiber[J]. Fine Chemicals, 2005, 22(3): 177-180. | |
41 | LIU Mengzhu, WANG Yongpeng, CHENG Zhiqiang, et al. Electrospun carboxylic-functionalized poly(arylene ether ketone) ultrafine fibers[J]. High Performance Polymers, 2015, 27(8): 939-949. |
42 | DJAFARI PETROUDY Seyed Rahman, ARJMAND KAHAGH Sajad, VATANKHAH Elham. Env ironmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw[J]. Carbohydrate Polymers, 2021, 251: 117087. |
43 | 丁志荣. 超吸水纤维非织造材料结构与性能研究[D]. 上海: 东华大学, 2011. |
DING Zhirong. Structure and properties of nonwovens containing superabsorbent fiber[D]. Shanghai: Donghua University, 2011. | |
44 | 邵赛, 郑昌群, 邓钢桥, 等. 吸水膜的制备及性能研究[J]. 弹性体, 2004, 14(5): 55-57. |
SHAO Sai, ZHENG Changqun, DENG Gangqiao, et al. The preparation of absorbing water membrane and its performance[J]. China Elastomerics, 2004, 14(5): 55-57. | |
45 | PRIYA, SHARMA Amit Kumar, KAITH Balbir Singh, et al. Synthesis of dextrin-polyacrylamide and boric acid based tough and transparent, self-healing, superabsorbent film[J]. International Journal of Biological Macromolecules, 2021, 182: 712-721. |
46 | 王洪玲, 韩俊彪, 韩路路, 等. 一种壳聚糖/纳米纤维素复合膜的制备及性能研究[J]. 广东化工, 2021, 48(9): 50-51, 54. |
WANG Hongling, HAN Junbiao, HAN Lulu, et al. Preparation and properties of a nano-cellulose chitosan composite film[J]. Guangdong Chemical Industry, 2021, 48(9): 50-51, 54. | |
47 | KASSEM Ihsane, KASSAB Zineb, KHOULOUD Mehdi, et al. Phosphoric acid-mediated green preparation of regenerated cellulose spheres and their use for all-cellulose cross-linked superabsorbent hydrogels[J]. International Journal of Biological Macromolecules, 2020, 162: 136-149. |
48 | SALAM Abdus, PAWLAK Joel J, VENDITTI Richard A, et al. Synthesis and characterization of starch citrate-chitosan foam with superior water and saline absorbance properties[J]. Biomacromolecules, 2010, 11(6): 1453-1459. |
49 | LIU J, LI B, ZHU B, et al. Study on properties and aggregation structures of deacetylated konjac glucomannan/chitosan hydrochloride absorbent blend gel films[J]. Journal of Applied Polymer Science, 2010, 115(3): 1503-1509. |
50 | ABDEL BARY E M, FEKRI Ahmed, SOLIMAN Yaser A, et al. Novel superabsorbent membranes made of PVA and Ziziphus spina-christi cellulose for agricultural and horticultural applications[J]. New Journal of Chemistry, 2017, 41(18): 9688-9700. |
51 | WANG Xuejun, LOU Tao, ZHAO Wenhua, et al. Preparation of pure chitosan film using ternary solvents and its super absorbency[J]. Carbohydrate Polymers, 2016, 153: 253-257. |
52 | GONG Chen, SHI Yu, NI Jianping, et al. Investigation of porous structure of aerogel prepared from nanofibrillated cellulose[J]. Journal of Korea Technical Association of the Pulp and Paper Industry, 2016, 48(6): 17. |
53 | GORGIEVA Selestina, KOKOL Vanja. Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear[J]. Carbohydrate Polymers, 2011, 85(3): 664-673. |
54 | Eunjoo KO, KIM Hyungsup. Preparation of chitosan aerogel crosslinked in chemical and ionical ways by non-acid condition for wound dressing[J]. International Journal of Biological Macromolecules, 2020, 164: 2177-2185. |
55 | KAYA Mehmet. Super absorbent, light, and highly flame retardant cellulose-based aerogel crosslinked with citric acid[J]. Journal of Applied Polymer Science, 2017, 134(38): 45315. |
56 | CAPEZZA Antonio Jose, CUI Yuxiao, NUMATA Keiji, et al. High capacity functionalized protein superabsorbents from an agricultural co-product: a cradle-to-cradle approach[J]. Advanced Sustainable Systems, 2020, 4(9): 2000110. |
57 | CHANG Chunyu, DUAN Bo, CAI Jie, et al. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery[J]. European Polymer Journal, 2010, 46(1): 92-100. |
58 | ILLEPERUMA Widusha R K, ROTHEMUND Philipp, SUO Zhigang, et al. Fire-resistant hydrogel-fabric laminates: a simple concept that may save lives[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 2071-2077. |
59 | LI Bing, LI Dapeng, YANG Yanni, et al. Study of thermal-sensitive alginate-Ca2+/poly (N-isopropyla crylamide) hydrogels supported by cotton fabric for wound dressing applications[J]. Textile Research Journal, 2019, 89(5): 801-813. |
60 | WANG Ming, FENG Xiao, WANG Xijun, et al. Facile gelation of a fully polymeric conductive hydrogel activated by liquid metal nanoparticles[J]. Journal of Materials Chemistry A, 2021, 9(43): 24539-24547. |
[1] | ZU Mei, XU Haitao, XIE Wei, CHENG Haifeng. Progress in water stable and water absorption applications of metal-organic frameworks [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4254-4267. |
[2] | DUAN Zhengyang, HU Ningmeng, LI Tianguo. Preparation of xanthate-functionalized cross-linked baker's yeast and its adsorption characteristics for Pb(Ⅱ) [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3925-3937. |
[3] | CHEN Yong, CHENG Ning, YANG Yubing, LU Kailing, LUO Ying, YI Hui. Highly efficient adsorption of Basic Violet 3 dye by composite material derived from graphene oxide intercalated bentonite [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3324-3332. |
[4] | FAN Xiangru, YANG Yijin, GUO Xujing, ZHANG Quanbi. Study on the adsorption characteristics of methylene blue by soft manganese ore-oil sludge-based activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6664-6671. |
[5] | JIANG Bolong, SHI Shunjie, JIANG Hailin, FENG Xin, SUN Haofen. Research progress in phenol adsorption mechanism over metal-organic framework from wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4525-4539. |
[6] | LIU Qin, ZHOU Xintao, HUANG Jing, LUO Zhongqiu, SHAO Zhoujun, WANG Luxing, WEI Yu, LUO Yunlong. Research statue on adsorption properties and mechanism of heavy metal ions using red mud [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3455-3465. |
[7] | CHEN Shaohua, CHEN Wenliang, DING Yi, ZHAO Donglin, XIE Fazhi, REN Qifang. Study on the structure and adsorption mechanism of three dimensional electrochemical modified electrode for dopamine response [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6135-6144. |
[8] | Meng LI, Wei LI, Shuai ZHANG, Yuwei LI, Fang LIU, Chaocheng ZHAO, Yongqiang WANG. Research progress on adsorption of VOCs by MOF and its composite [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 415-426. |
[9] | Yonghou XIAO, Kerun ZHU, Xiaoying DONG, Gaohong HE. Research progress on porous materials for desulfurization of fuel by selective adsorption [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2241-2250. |
[10] | Wanying CUI, Hengyu AI, Shihao ZHANG, Jinzhi WEI. Research status on application of modified adsorbents in phosphorus removal from wastewater [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4210-4226. |
[11] | ZHONG Huangliang, WANG Chunxia, ZHOU Guanglin, ZHOU Hongjun. Static adsorption desulfurization based on nanomaterials [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2655-2663. |
[12] | WANG Wangyang, LIU Cong, YUAN Pei. Advances on the removal of polycyclic aromatic hydrocarbons in environment by adsorption [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 355-363. |
[13] | CAI Yuanyuan, LIU Ming, YANG Ying, WANG Shuangfei, HUANG Lijie. Preparation and influencing factors of release flux factor of slow-release solid chlorine dioxide [J]. Chemical Industry and Engineering Progree, 2015, 34(06): 1613-1618,1630. |
[14] | SU Xiuxia,ZHAO Qianfei,LI Zhongjin,JING Jie,ZHI Juanjuan. Adsorption behavior and mechanism of crosslinked starch microspheres for p-hydroxyanisole [J]. Chemical Industry and Engineering Progree, 2011, 30(9): 1926-. |
[15] | SU Xiuxia,ZHU Xiaofeng,LI Zhongjin,HAO Mingde,MIAO Zongcheng,ZHANG Chaowu. Synthesis of a new xanthan gum -based superabsorbent resin [J]. Chemical Industry and Engineering Progree, 2009, 28(8): 1386-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |