Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (07): 2655-2663.DOI: 10.16085/j.issn.1000-6613.2017-1727
Previous Articles Next Articles
ZHONG Huangliang, WANG Chunxia, ZHOU Guanglin, ZHOU Hongjun
Received:
2017-08-19
Revised:
2018-01-20
Online:
2018-07-05
Published:
2018-07-05
钟黄亮, 王春霞, 周广林, 周红军
通讯作者:
王春霞,副教授,研究方向为纳米材料脱硫;周广林,副教授,研究方向为脱硫。
作者简介:
钟黄亮(1992-),男,硕士研究生。
基金资助:
CLC Number:
ZHONG Huangliang, WANG Chunxia, ZHOU Guanglin, ZHOU Hongjun. Static adsorption desulfurization based on nanomaterials[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2655-2663.
钟黄亮, 王春霞, 周广林, 周红军. 基于纳米材料的静态吸附脱硫进展[J]. 化工进展, 2018, 37(07): 2655-2663.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1727
[1] WU H, DUAN A, ZHAO Z, et al. Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent[J]. Fuel, 2014, 130(7):203-210. [2] 郭蓉. 柴油深度脱硫新型催化剂及其级配技术开发研究[D]. 上海:华东理工大学, 2014. GUO R. Development of diesel hydrodesulfurization catalysts and the study on catalyst stacking techenology[D]. Shanghai:East China University of Science and Technology, 2014. [3] 王广建,仙保震,刘影,等. 吸附法脱除柴油中噻吩类含硫化合物的研究进展[J]. 化工进展, 2014, 33(10):2764-2770. WANG G J, XIAN B Z, LIU Y, et al. Advances on adsorptive desulfurization of diesel for thiophenic sulfur compounds[J]. Chemical Industry and Engineering Progress, 2014, 33(10):2764-2770. [4] PERALTA D, CHAPLAIS G, SIMONMASSERON A, et al. Metal-organic framework materials for desulfurization by adsorption[J]. Energy & Fuels, 2012, 26(8):4953-4960. [5] ZHANG H X, HUANG H L, LI C X, et al. Adsorption behavior of metal-organic frameworks for thiophenic sulfur from diesel oil[J]. Industrial and Engineering Chemistry Research, 2012, 51(38):12449-12455. [6] 陈晓陆,马志研. 燃料油吸附脱硫的研究进展[J]. 山东化工,2016, 45(22):41-43. CHEN X L, MA Z Y. The research in adsorbents of adsorptive desulfurization of fuels[J]. Shandong Chemical Industry, 2016, 45(22):41-43. [7] RIBEIRO S, BARBOSA A D S, GOMES A C, et al. Catalytic oxidative desulfurization systems based on keggin phosphotungstate and metal-organic framework MIL-101[J]. Fuel Processing Technology, 2013, 116(12):350-357. [8] CHENG J, JIN S, ZHANG R, et al. Enhanced adsorption selectivity of dibenzothiophene on ordered mesoporous carbon-silica nanocomposites via copper modification[J]. Microporous & Mesoporous Materials, 2015, 212:137-145. [9] 宋乐春,段晓磊,朱丽君,等. 介孔分子筛改性及在吸附脱硫中的应用[J]. 化工进展, 2014, 33(9):2356-2362. SONG L C, DUAN X L, ZHU L J, et al. Modification of mesoporous silicas and their applications in adsorptive desulfurization[J]. Chemical Industry and Engineering Progress, 2014, 33(9):2356-2362. [10] 鞠雅娜,兰玲,刘坤红,等. 催化裂化汽油深度加氢脱硫催化剂的研制及性能评价[J]. 化工进展, 2017, 36(7):2511-2516. JU Y L, LAN L, LIU K H, et al. Preparation and evaluation of a deep hydrodesulfurization (HDS)catalyst for catalytic cracking gasoline[J]. Chemical Industry and Engineering Progress, 2017, 36(7):2511-2516. [11] KUMAR D R, SRIVASTAVA V C. Studies on adsorptive desulfurization by activated carbon[J]. Clean-Soil Air Water, 2012, 40(5):545-550. [12] GAO J B, WANG S G, JIANG Z, et al. Deep desulfurization from fuel oil via selective oxidation using an amphiphilic peroxotungsten catalyst assembled in emulsion droplets[J]. Journal of Molecular Catalysis A:Chemical, 2006, 258(1):261-266. [13] ZHANG J C, SONG L F, HU J Y, et al. Investigation on gasoline deep desulfurization for fuel cell applications[J]. Energy Conversion & Management, 2005, 46(1):1-9. [14] 罗明芳,高红帅,李玉光,等. 油品固定化细胞脱硫研究进展[J]. 化工进展, 2009, 28(11):1986-1990. LUO M F, GAO H S, LI Y G, et al. Research advances in biodesulfurization of petroleum feedstocks by immobilized cells[J]. Chemical Industry and Engineering Progress, 2009, 28(11):1986-1990. [15] MEI Xue, PUHONG Wen, RAMESH Chitrakar, et al. Screening of inorganic adsorbents for selective adsorption of thiophene from model gasoline[J]. Separation Science & Technology, 2012, 47(13):1926-1936. [16] 熊麟, 颜学敏, 苏高申, 等. 活性炭用于燃油吸附脱硫研究进展[J]. 精细石油化工进展, 2011, 12(10):55-58. XIONG L, YAN X M, SU G S, et al. Research development of fuel oil adsorptive desulfurization by activated carbon[J]. Advances in Fine Petrochemicals, 2011, 12(10):55-58. [17] 张晓丹, 张东辉. 介孔二氧化硅负载银离子吸附脱除甲硫醚[J]. 化工进展, 2011, 30(2):268-271. ZHANG X D, ZHANG D H. Adsorption removal of dimethylsulfide on Ag-AMS material[J]. Chemical Industry and Engineering Progress, 2011, 30(2):268-271. [18] LI Y X, JIANG W J, TAN P, et al. What matters to the adsorptive desulfurization performance of metal-organic frameworks?[J]. Journal of Physical Chemistry C, 2016, 119(38):21969-21977. [19] HASAN Z, JHUNG S H. Facile method to disperse nonporous metal organic frameworks:composite formation with a porous metal organic framework and application in adsorptive desulfurization[J]. ACS Applied Materials & Interfaces, 2015, 7(19):10429-10435. [20] VAN D V B, BOULHOUT M, VERMOORTELE F, et al. N/S-heterocyclic contaminant removal from fuels by the mesoporous metal-organic framework MIL-100:the role of the metal ion[J]. Journal of the American Chemical Society, 2013, 135(26):9849-9856. [21] 王广建,郭娜娜,张晋,等. 柴油选择性吸附脱硫的机理及研究进展[J]. 炼油技术与工程, 2012, 42(3):10-15. WANG G J, GUO N N, ZHANG J, et al. Mechanisms of selective absorption desulfurization technology for diesel and R&D development[J]. Petroleum Refinery Engineering, 2012, 42(3):10-15. [22] TIAN W H, SUN L B, SONG X L, et al. Adsorptive desulfurization by copper species within confined space[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2010, 26(22):17398-17404. [23] PILLONI M, PADELLA F, ENNAS G, et al. Liquid-assisted mechanochemical synthesis of an iron carboxylate metal organic framework and its evaluation in diesel fuel desulfurization[J]. Microporous & Mesoporous Materials, 2015, 213:14-21. [24] KHAN N A, JHUNG S H. Low-temperature loading of Cu+ species over porous metal-organic frameworks (MOFs) and adsorptive desulfurization with Cu+-loaded MOFs[J]. Journal of Hazardous Materials, 2012, 237/238(17):180-185. [25] KHAN N A, JHUNG S H. Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel[J]. Journal of Hazardous Materials, 2013, 260(18):1050-1056. [26] TANG W, GU J, HUANG H, et al. Metal-organic frameworks for highly efficient adsorption of dibenzothiophene from liquid fuels[J]. AIChE Journal, 2016, 62(12):4491-4496. [27] JIA S Y, ZHANG Y F, LIU Y, et al. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material[J]. Journal of Hazardous Materials, 2013, 262(22):589-597. [28] BAGHERI M, MASOOMI M Y, MORSALI A. High organic sulfur removal performance of a cobalt based metal-organic framework[J]. Journal of Hazardous Materials, 2017, 331:142-149. [29] QIN L, LIU W, YANG Y, et al. Functional monomer screening and preparation of dibenzothiophene-imprinted polymers on the surface of carbon microsphere[J]. Monatshefte für Chemie-Chemical Monthly, 2014, 146(3):449-458. [30] CHANG Y, ZHANG L, YING H, et al. Desulfurization of gasoline using molecularly imprinted chitosan as selective adsorbents[J]. Applied Biochemistry & Biotechnology, 2010, 160(2):593-603. [31] LIU L K, YANG W M, XU W Z, et al. Molecular simulation assisted design and preparation of magnetic molecularly imprinted polymers and their characteristics[J]. Chinese Journal of Analytical Chemistry, 2014, 42(2):249-257. [32] ALI H R, EL-MAGHRABI H H, ZAHRAN F, et al. A novel surface imprinted polymer/magnetic hydroxyapatite nanocomposite for selective dibenzothiophene scavenging[J]. Applied Surface Science, 2017, 426:56-66. [33] LIU W, QIN L, SHI W, et al. Molecularly imprinted polymers on the surface of porous carbon microspheres for capturing dibenzothiophene[J]. Microchimica Acta, 2016, 183(3):1153-1160. [34] AFONSO C A M, FERREIRA J P, ROSATELLA A A, et al. Integrated desulfurization of diesel by combination of metal-free oxidation and product removal by molecularly imprinted polymers[J]. RSC Advances, 2014, 4(98):54948-54952. [35] SHIMOYAMA I, BABA Y. Thiophene adsorption on phosphorus-and nitrogen-doped graphites:control of desulfurization properties of carbon materials by heteroatom doping[J]. Carbon, 2016, 98:115-125. [36] MENZEL R, IRURETAGOYENA D, WANG Y, et al. Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels[J]. Fuel, 2016, 181:531-536. [37] YANG D, YANG S, JIANG Z, et al. Polydimethyl siloxane-graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance[J]. Journal of Membrane Science, 2015, 487:152-161. [38] DIZAJI A K, MORTAHEB H R, MOKHTARANI B. Noncovalently functionalized graphene oxide/graphene with imidazolium-based ionic liquids for adsorptive removal of dibenzothiophene from model fuel[J]. Journal of Materials Science, 2016, 51(22):1-12. [39] ABDI G, ASHOKKUMAR M, ALIZADEH A, et al. Ultrasoundassisted oxidative-adsorptive desulfurization using highly acidic graphene oxide as a catalyst-adsorbent[J]. Fuel, 2017, 210:639-645. [40] NAZAL M K, KHALED M, ALJUNDI I H, et al. Synthesis of silver sulfide modified carbon materials for adsorptive removal of dibenzothiophene in n-hexane[J]. Environmental Technology, 2017, 38(23):2949-2963. [41] JIE B, LOH G, GWIE C G, et al. Desulfurization of diesel fuels by selective adsorption on activated carbons:competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons[J]. Chemical Engineering Journal, 2011, 166(1):207-217. [42] SHI Y, ZHANG X, LIU G. Activated carbons derived from hydrothermally carbonized sucrose:remarkable sdsorbents for adsorptive desulfurization[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9):2237-2246. [43] SUN B, LI G, WANG X. Facile synthesis of microporous carbon through a soft-template pathway and its performance in desulfurization and denitrogenation[J]. Journal of Natural Gas Chemistry, 2010, 19(5):471-476. [44] KIANPOUR E, AZIZIAN S. Optimization of dispersed carbon nanoparticles synthesis for rapid desulfurization of liquid fuel[J]. Petroleum Science, 2016, 13(1):146-154. [45] SWAT A A A, SALEH T A, GANIYU S A, et al. Preparation of activated carbon, zinc oxide and nickel oxide composites for potential application in the desulfurization of model diesel fuels[J]. Journal of Analytical & Applied Pyrolysis, 2017, 128:246-256. [46] JI H, SUN J, WU P, et al. Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2016, 423:207-215. [47] WANG X, ZHAO Z, ZHENG P, et al. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and the superior catalytic performance for hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2016, 344:680-691. [48] RASHIDI S, NIKOU M R K, ANVARIPOUR B. Adsorptive desulfurization and denitrogenation of model fuel using HPW and NiO-HPW modified aluminosilicate mesostructures[J]. Microporous & Mesoporous Materials, 2015, 211:134-141. [49] XUN S, ZHU W, ZHU F, et al. Design and synthesis of W-containing mesoporous material with excellent catalytic activity for the oxidation of 4,6-DMDBT in fuels[J]. Chemical Engineering Journal, 2015, 280:256-264. [50] HE G S, SUN L B, SONG X L, et al. Adjusting host properties to promote cuprous chloride dispersion and adsorptive desulfurization sites formation on SBA-15[J]. Energy & Fuels, 2011, 25(8):3506-3513. [51] ASLAM S, SUBHAN F, YAN Z, et al. Facile fabrication of Ni-based KIT-6 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2016, 302:239-248. [52] HAUSER J L, TRAN D T, CONLEY E T, et al. Plasma treatment of silver impregnated mesoporous aluminosilicate nanoparticles for adsorptive desulfurization[J]. Chemistry of Materials, 2016, 28(2):474-479. [53] XIONG J, YANG L, CHAO Y, et al. Boron nitride mesoporous nanowires with doped oxygen atoms for the remarkable adsorption desulfurization performance from fuels[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8):4457-4464. |
[1] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[2] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[3] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[5] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[6] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[7] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[8] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[9] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[10] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[11] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
[12] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[13] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[14] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
[15] | HU Jinjian, LI Long, DONG Zijing. Application of carbon nanomaterials in PU yarn-based flexible strain sensors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 872-883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |