Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4254-4267.DOI: 10.16085/j.issn.1000-6613.2021-2040
• Materials science and technology • Previous Articles Next Articles
ZU Mei1(), XU Haitao1,2, XIE Wei2, CHENG Haifeng1
Received:
2021-09-28
Revised:
2021-11-25
Online:
2022-08-22
Published:
2022-08-25
Contact:
ZU Mei
通讯作者:
祖梅
作者简介:
祖梅(1984—),女,博士,副研究员,研究方向为仿生功能材料。E-mail:基金资助:
CLC Number:
ZU Mei, XU Haitao, XIE Wei, CHENG Haifeng. Progress in water stable and water absorption applications of metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4254-4267.
祖梅, 许海涛, 谢炜, 程海峰. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2040
MOFs名称 | 饱和吸附量/g?g-1 | 孔径/? | 配体 | 参考文献 |
---|---|---|---|---|
NU-1500-Cr | 1.02 | 14 | Triptycene | [ |
NU-1500-Fe | — | 14 | Triptycene | [ |
NU-1500-Sc | — | 14 | Triptycene | [ |
Cr-soc-MOF-1 | 1.95 | — | H4TCPT | [ |
MIL-101(Cr) | 1.40 | 29,34 | BDC | [ |
MIL-101(Cr)-NH2 | 1.05 | — | BDC-NH2 | [ |
MIL-101(Cr)-NO2 | 0.45 | — | BDC-NO2 | [ |
MIL-101(Cr)-SO3H | 0.95 | — | BDC-SO3H | [ |
UiO-66(Zr) | 0.36 | 7.4,8.4 | BDC | [ |
UiO-66(Zr)-NH2 | 0.36 | — | BDC-NH2 | [ |
(Mg)MOF-74 | 0.63 | 11.1 | DOT | [ |
(Ni)MOF-74 | 0.51 | — | DOT | [ |
(Co)MOF-74 | 0.49 | — | DOT | [ |
Ni-MOF-74-BPP | 0.81 | 17 | BPP | [ |
Ni-MOF-74-TPP | 0.9 | 23 | TPP | [ |
HV-MOF-1 | 0.59 | — | H2dcbp | [ |
LiCl@MIL-101(Cr) | 0.77 | — | BDC | [ |
(Al)MOF-303 | 1.30 | — | Fumarate | [ |
Ni2Cl2BTDD | 1.07 | 38 | H2BTDD | [ |
Ni2Br2BTDD | 0.76 | 38 | H2BTDD | [ |
Zr-MOF-808 | 0.74 | 18.4 | BTC | [ |
Zr-MOF-801 | 0.46 | 4.8,7.4 | Fumarate | [ |
BIT-66 | 0.55 | 65 | H3BTB | [ |
Y-shp-MOF-5 | 0.45 | 12 | BTEB | [ |
MOFs名称 | 饱和吸附量/g?g-1 | 孔径/? | 配体 | 参考文献 |
---|---|---|---|---|
NU-1500-Cr | 1.02 | 14 | Triptycene | [ |
NU-1500-Fe | — | 14 | Triptycene | [ |
NU-1500-Sc | — | 14 | Triptycene | [ |
Cr-soc-MOF-1 | 1.95 | — | H4TCPT | [ |
MIL-101(Cr) | 1.40 | 29,34 | BDC | [ |
MIL-101(Cr)-NH2 | 1.05 | — | BDC-NH2 | [ |
MIL-101(Cr)-NO2 | 0.45 | — | BDC-NO2 | [ |
MIL-101(Cr)-SO3H | 0.95 | — | BDC-SO3H | [ |
UiO-66(Zr) | 0.36 | 7.4,8.4 | BDC | [ |
UiO-66(Zr)-NH2 | 0.36 | — | BDC-NH2 | [ |
(Mg)MOF-74 | 0.63 | 11.1 | DOT | [ |
(Ni)MOF-74 | 0.51 | — | DOT | [ |
(Co)MOF-74 | 0.49 | — | DOT | [ |
Ni-MOF-74-BPP | 0.81 | 17 | BPP | [ |
Ni-MOF-74-TPP | 0.9 | 23 | TPP | [ |
HV-MOF-1 | 0.59 | — | H2dcbp | [ |
LiCl@MIL-101(Cr) | 0.77 | — | BDC | [ |
(Al)MOF-303 | 1.30 | — | Fumarate | [ |
Ni2Cl2BTDD | 1.07 | 38 | H2BTDD | [ |
Ni2Br2BTDD | 0.76 | 38 | H2BTDD | [ |
Zr-MOF-808 | 0.74 | 18.4 | BTC | [ |
Zr-MOF-801 | 0.46 | 4.8,7.4 | Fumarate | [ |
BIT-66 | 0.55 | 65 | H3BTB | [ |
Y-shp-MOF-5 | 0.45 | 12 | BTEB | [ |
1 | ZHOU H C, LONG J R, YAGHI O M. Introduction to metal–organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
2 | FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
3 | HÖNICKE I M, SENKOVSKA I, BON V, et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials[J]. Angewandte Chemie International Edition, 2018, 57(42): 13780-13783. |
4 | ZHOU H C, LONG J R, YAGHI O M, et al. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
5 | LI R, ZHANG W, ZHOU K. Metal–organic-framework-based catalysts for photoreduction of CO2 [J]. Advanced Materials, 2018, 30(35): e1705512. |
6 | LI D D, KASSYMOVA M, CAI X C, et al. Photocatalytic CO2 reduction over metal-organic framework-based materials[J]. Coordination Chemistry Reviews, 2020, 412: 213262. |
7 | 赵朝成, 吴光锐. MOFs复合材料催化降解水中有机污染物的应用研究进展[J]. 化工进展, 2019, 38(4): 1775-1784. |
ZHAO Chaocheng, WU Guangrui. Research progress on the mechanism and applications of MOFs composite materials for catalytic degradation of organic pollutants in the solution[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1775-1784. | |
8 | LI Y X, HAN Y C, WANG C C. Fabrication strategies and Cr(Ⅵ) elimination activities of the MOF-derivatives and their composites[J]. Chemical Engineering Journal, 2021, 405: 126648. |
9 | WANG J W, QIU F G, WANG P, et al. Boosted bisphenol A and Cr(Ⅵ) cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light[J]. Journal of Cleaner Production, 2021, 279: 123408. |
10 | XUE D X, WANG Q, BAI J F. Amide-functionalized metal-organic frameworks: syntheses, structures and improved gas storage and separation properties[J]. Coordination Chemistry Reviews, 2019, 378: 2-16. |
11 | DING M L, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
12 | CADIAU A, BELMABKHOUT Y, ADIL K, et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration[J]. Science, 2017, 356(6339): 731-735. |
13 | BOYD P G, CHIDAMBARAM A, GARCÍA-DÍEZ E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
14 | DUAN J G, PAN Y C, LIU G P, et al. Metal-organic framework adsorbents and membranes for separation applications[J]. Current Opinion in Chemical Engineering, 2018, 20: 122-131. |
15 | LI L B, LIN R B, KRISHNA R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
16 | HOU J, ZHANG H C, SIMON G P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions[J]. Advanced Materials, 2020, 32(18): e1902009. |
17 | LIN R B, LI L B, ZHOU H L, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133. |
18 | SILVA P, VILELA S M, TOMÉ J P, et al. Multifunctional metal-organic frameworks: from academia to industrial applications[J]. Chemical Society Reviews, 2015, 44(19): 6774-6803. |
19 | WANG X, ZHANG Y, CHANG Z, et al. Synergistically directed assembly of aromatic stacks based metal-organic frameworks by donor-acceptor and coordination interactions[J]. Chinese Journal of Chemistry, 2019, 37(9): 871-877. |
20 | KIM E J, SIEGELMAN R L, JIANG H Z H, et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks[J]. Science, 2020, 369(6502): 392-396. |
21 | ZHANG J, PEH S B, WANG J, et al. Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe3+ in aqueous solution[J]. Chemical Communications, 2019, 55(32): 4727-4730. |
22 | QIAO W Z, SONG T Q, ZHAO B. [Zn4O] Cluster-based metal-organic frameworks as catalysts for conversion of CO2 [J]. Chinese Journal of Chemistry, 2019, 37(5): 474-478. |
23 | KAYE S S, DAILLY A, YAGHI O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3 (MOF-5)[J]. Journal of the American Chemical Society, 2007, 129(46): 14176-14177. |
24 | CANIVET J, FATEEVA A, GUO Y M, et al. Water adsorption in MOFs: fundamentals and applications[J]. Chemical Society Reviews, 2014, 43(16): 5594-5617. |
25 | WU Y F, LV Z, ZHOU X, et al. Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture[J]. Chemical Engineering Journal, 2019, 355: 815-821. |
26 | WANG C, LIU X, KESER DEMIR N, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45(18): 5107-5134. |
27 | COLOMBO V, GALLI S, CHOI H J, et al. High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites[J]. Chemical Science, 2011, 2(7): 1311. |
28 | XUE D X, CAIRNS A J, BELMABKHOUT Y, et al. Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake[J]. Journal of the American Chemical Society, 2013, 135(20): 7660-7667. |
29 | XUE D X, BELMABKHOUT Y, SHEKHAH O, et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction[J]. Journal of the American Chemical Society, 2015, 137(15): 5034-5040. |
30 | LOISEAU T, SERRE C, HUGUENARD C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry—A European Journal, 2004, 10(6): 1373-1382. |
31 | MILEO P G M, CHO K HO, PARK J, et al. Unraveling the water adsorption mechanism in the mesoporous MIL-100(Fe) metal–organic framework[J]. The Journal of Physical Chemistry C, 2019, 123(37): 23014-23025. |
32 | JEREMIAS F, KHUTIA A, HENNINGER S K, et al. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—A promising application[J]. J. Mater. Chem., 2012, 22(20): 10148-10151. |
33 | FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
34 | DERIA P, CHUNG Y G, SNURR R Q, et al. Water stabilization of Zr6-based metal-organic frameworks via solvent-assisted ligand incorporation[J]. Chemical Science, 2015, 6(9): 5172-5176. |
35 | DERIA P, GÓMEZ-GUALDRÓN D A, BURY W, et al. Ultraporous, water stable, and breathing zirconium-based metal-organic frameworks with ftw topology[J]. Journal of the American Chemical Society, 2015, 137(40): 13183-13190. |
36 | CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
37 | KALMUTZKI M J, DIERCKS C S, YAGHI O M. Metal-organic frameworks for water harvesting from air[J]. Advanced Materials, 2018, 30(37): e1704304. |
38 | LI H L, EDDAOUDI M, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
39 | LIU T F, FENG D, CHEN Y P, et al. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area[J]. Journal of the American Chemical Society, 2015, 137(1): 413-419. |
40 | ZHANG M W, CHEN Y P, BOSCH M, et al. Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology[J]. Angewandte Chemie International Edition, 2014, 53(3): 815-818. |
41 | CADIAU A, LEE J S, DAMASCENO BORGES D, et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation[J]. Advanced Materials, 2015, 27(32): 4775-4780. |
42 | MOUCHAHAM G, COOPER L, GUILLOU N, et al. A robust infinite zirconium phenolate building unit to enhance the chemical stability of Zr MOFs[J]. Angewandte Chemie International Edition, 2015, 54(45): 13297-13301. |
43 | 陈小明. 金属-有机框架材料[M]. 北京: 化学工业出版社, 2017. |
CHEN Xiaoming. Metal-organic frameworks[M]. 2nd ed. Beijing: Chemical Industry Press, 2017. | |
44 | ZHANG J P, ZHANG Y B, LIN J B, et al. Metal azolate frameworks: from crystal engineering to functional materials[J]. Chemical Reviews, 2012, 112(2): 1001-1033. |
45 | PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
46 | ASSFOUR B, LEONI S, SEIFERT G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. The Journal of Physical Chemistry C, 2010, 114(31): 13381-13384. |
47 | MENG Y S, SHU L, XIE L H, et al. High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115: 331-338. |
48 | WANG L, WANG K C, AN H T, et al. A hydrolytically stable Cu(Ⅱ)-based metal–organic framework with easily accessible ligands for water harvesting[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49509-49518. |
49 | HE T, HUANG Z H, YUAN S, et al. Kinetically controlled reticular assembly of a chemically stable mesoporous Ni(Ⅱ)-pyrazolate metal-organic framework[J]. Journal of the American Chemical Society, 2020, 142(31): 13491-13499. |
50 | BAI Y, DOU Y, XIE L H, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. |
51 | YUAN S, FENG L, WANG K, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): e1704303. |
52 | 李竞草, 吴冬霞, 常丽萍, 等. 疏水性金属-有机骨架材料的研究进展[J]. 化工进展, 2020, 39(1): 224-232. |
LI Jingcao, WU Dongxia, CHANG Liping, et al. Research progress of hydrophobic metal-organic framework materials[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 224-232. | |
53 | TAYLOR J M, VAIDHYANATHAN R, IREMONGER S S, et al. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers[J]. Journal of the American Chemical Society, 2012, 134(35): 14338-14340. |
54 | NIJEM N, CANEPA P, KAIPA U, et al. Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework[J]. Journal of the American Chemical Society, 2013, 135(34): 12615-12626. |
55 | YANG C, KAIPA U, MATHER Q Z, et al. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J]. Journal of the American Chemical Society, 2011, 133(45): 18094-18097. |
56 | PAN T T, YANG K J, HAN Y. Recent progress of atmospheric water harvesting using metal-organic frameworks[J]. Chemical Research in Chinese Universities, 2020, 36(1): 33-40. |
57 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
58 | BURTCH N C, JASUJA H, WALTON K S. Water stability and adsorption in metal–organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
59 | ROSI N L, KIM J, EDDAOUDI M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J]. Journal of the American Chemical Society, 2005, 127(5): 1504-1518. |
60 | KÜSGENS P, ROSE M, SENKOVSKA I, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3): 325-330. |
61 | DECOSTE J B, PETERSON G W, JASUJA H, et al. Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit[J]. Journal of Materials Chemistry A, 2013, 1(18): 5642. |
62 | TAN K, ZULUAGA S, GONG Q H, et al. Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74[J]. Chemistry of Materials, 2014, 26(23): 6886-6895. |
63 | DECOSTE J B, PETERSON G W, SCHINDLER B J, et al. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66[J]. Journal of Materials Chemistry A, 2013, 1(38): 11922. |
64 | FURUKAWA H, GÁNDARA F, ZHANG Y B, et al. Water adsorption in porous metal–organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
65 | TADDEI M. When defects turn into virtues: the curious case of zirconium-based metal-organic frameworks[J]. Coordination Chemistry Reviews, 2017, 343: 1-24. |
66 | GHOSH P, COLÓN Y J, SNURR R Q. Water adsorption in UiO-66: the importance of defects[J]. Chem Commun, 2014, 50(77): 11329-11331. |
67 | FURUKAWA H, GÁNDARA F, ZHANG Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
68 | BRENNAN J K, BANDOSZ T J, THOMSON K T, et al. Water in porous carbons[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187/188: 539-568. |
69 | COUDERT F X, BOUTIN A, FUCHS A H, et al. Adsorption deformation and structural transitions in metal-organic frameworks: from the unit cell to the crystal[J]. The Journal of Physical Chemistry Letters, 2013, 4(19): 3198-3205. |
70 | GHOSH P, SAHA S K, ROYCHOWDHURY A, et al. Recognition of an explosive and mutagenic water pollutant, 2,4,6-trinitrophenol, by cost-effective luminescent MOFs[J]. European Journal of Inorganic Chemistry, 2015, 2015(17): 2851-2857. |
71 | QIN J S, ZHANG S R, DU D Y, et al. A microporous anionic metal-organic framework for sensing luminescence of lanthanide(Ⅲ) ions and selective absorption of dyes by ionic exchange[J]. Chemistry—A European Journal, 2014, 20(19): 5625-5630. |
72 | CANIVET J, BONNEFOY J, DANIEL C, et al. Structure–property relationships of water adsorption in metal–organic frameworks[J]. New J. Chem., 2014, 38(7): 3102-3111. |
73 | MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323. |
74 | PARK K C, CHHATRE S S, SRINIVASAN S, et al. Optimal design of permeable fiber network structures for fog harvesting[J]. Langmuir, 2013, 29(43): 13269-13277. |
75 | LEE A, MOON M W, LIM H, et al. Water harvest via dewing[J]. Langmuir, 2012, 28(27): 10183-10191. |
76 | KLEMM O, SCHEMENAUER R S, LUMMERICH A, et al. Fog as a fresh-water resource: overview and perspectives[J]. Ambio, 2012, 41(3): 221-234. |
77 | WILLIAM G E, MOHAMED M H, FATOUH M. Desiccant system for water production from humid air using solar energy[J]. Energy, 2015, 90: 1707-1720. |
78 | 张晋维, 李平, 张馨凝, 等. 水稳定性金属有机框架材料的水吸附性质与应用[J]. 化学学报, 2020, 78(7): 597-612. |
ZHANG Jinwei, LI Ping, ZHANG Xinning, et al. Water adsorption properties and applications of stable metal-organic frameworks[J]. Acta Chimica Sinica, 2020, 78(7): 597-612. | |
79 | HANIKEL N, PRÉVOT M S, FATHIEH F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester[J]. ACS Central Science, 2019, 5(10): 1699-1706. |
80 | FATHIEH F, KALMUTZKI M J, KAPUSTIN E A, et al. Practical water production from desert air[J]. Sci. Adv., 2018, 4(6): eaat3198. |
81 | XU J X, LI T X, CHAO J W, et al. Efficient solar-driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt[J]. Angewandte Chemie International Edition, 2020, 59(13): 5202-5210. |
82 | YILMAZ G, MENG F L, LU W, et al. Autonomous atmospheric water seeping MOF matrix[J]. Science Advances, 2020, 6(42): eabc8605. |
83 | CHEN Z J, LI P H, ZHANG X, et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption[J]. Journal of the American Chemical Society, 2019, 141(7): 2900-2905. |
84 | TOWSIF ABTAB S M, ALEZI D, BHATT P M, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water[J]. Chem, 2018, 4(1): 94-105. |
85 | ZHAO T, JEREMIAS F, BOLDOG I, et al. High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr)[J]. Dalton Transactions, 2015, 44(38): 16791-16801. |
86 | KHUTIA A, RAMMELBERG H U, SCHMIDT T, et al. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application[J]. Chemistry of Materials, 2013, 25(5): 790-798. |
87 | AKIYAMA G, MATSUDA R, SATO H, et al. Effect of functional groups in MIL-101 on water sorption behavior[J]. Microporous and Mesoporous Materials, 2012, 157: 89-93. |
88 | JASUJA H, ZANG J, SHOLL D S, et al. Rational tuning of water vapor and CO2 adsorption in highly stable Zr-based MOFs[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23526-23532. |
89 | CMARIK G E, KIM M, COHEN S M, et al. Tuning the adsorption properties of UiO-66 via ligand functionalization[J]. Langmuir, 2012, 28(44): 15606-15613. |
90 | ZHENG J, VEMURI R S, ESTEVEZ L, et al. Pore-engineered metal–organic frameworks with excellent adsorption of water and fluorocarbon refrigerant for cooling applications[J]. Journal of the American Chemical Society, 2017, 139(31): 10601-10604. |
91 | WANG C, LUO Y H, HE X T, et al. Porous high-valence metal-organic framework featuring open coordination sites for effective water adsorption[J]. Inorganic Chemistry, 2019, 58(5): 3058-3064. |
92 | XU J X, LI T X, CHAO J W, et al. Efficient solar-driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt[J]. Angewandte Chemie International Edition, 2020, 59(13): 5202-5210. |
93 | RIETH A J, WRIGHT A M, SKORUPSKII G, et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(35): 13858-13866. |
94 | LOGAN M W, LANGEVIN S, XIA Z Y. Reversible atmospheric water harvesting using metal-organic frameworks[J]. Scientific Reports, 2020, 10(1): 1-11. |
95 | MA D, LI P, DUAN X Y, et al. A hydrolytically stable vanadium(Ⅳ) metal-organic framework with photocatalytic bacteriostatic activity for autonomous indoor humidity control[J]. Angewandte Chemie International Edition, 2020, 59(10): 3905-3909. |
96 | ABDULHALIM R G, BHATT P M, BELMABKHOUT Y, et al. A fine-tuned metal-organic framework for autonomous indoor moisture control[J]. Journal of the American Chemical Society, 2017, 139(31): 10715-10722. |
97 | MESGARIAN R, HEYDARINASAB A, RASHIDI A, et al. Adsorption and growth of water clusters on UiO-66 based nanoadsorbents: a systematic and comparative study on dehydration of natural gas[J]. Separation and Purification Technology, 2020, 239: 116512. |
98 | HENNINGER S K, HABIB H A, JANIAK C. MOFs as adsorbents for low temperature heating and cooling applications[J]. Journal of the American Chemical Society, 2009, 131(8): 2776. |
99 | WADE C R, CORRALES-SANCHEZ T, NARAYAN T C, et al. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties[J]. Energy & Environmental Science, 2013, 6(7): 2172-2177. |
100 | DE LANGE M F, VEROUDEN K J F M, VLUGT T J H, et al. Adsorption-driven heat pumps: the potential of metal-organic frameworks[J]. Chemical Reviews, 2015, 115(22): 12205-12250. |
101 | LIU X L, WANG X R, KAPTEIJN F. Water and metal–organic frameworks: from interaction toward utilization[J]. Chemical Reviews, 2020, 120(16): 8303-8377. |
102 | WANG S J, LEE J S, WAHIDUZZAMAN M, et al. A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration[J]. Nature Energy, 2018, 3(11): 985–993. |
103 | YAN J, YU Y, MA C, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity[J]. Applied Thermal Engineering, 2015, 84: 118-125. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Structural design of metal-organic framework materials and its adsorption performance on synthetic dyes [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5322-5338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |