1 |
FAN Z Q, QIN Y K, LIU S, et al. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives[J]. Carbohydrate Polymers, 2018, 190: 1-11.
|
2 |
KHAN G, YADAV S K, PATEL R R, et al. Tinidazole functionalized homogeneous electrospun chitosan/poly(ε-caprolactone) hybrid nanofiber membrane: development, optimization and its clinical implications[J]. International Journal of Biological Macromolecules, 2017, 103: 1311-1326.
|
3 |
刘其海, 谢婉婷, 贾振宇, 等. 壳聚糖胶囊材料的制备及其缓释性能[J]. 化工进展, 2021, 40(1): 339-345.
|
|
LIU Qihai, XIE Wanting, JIA Zhenyu, et al. Preparation of chitosan capsule materials and its sustained release properties[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 339-345.
|
4 |
SHARIATINIA Z, ZAHRAEE Z. Controlled release of metformin from chitosan-based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems[J]. Journal of Colloid and Interface Science, 2017, 501: 60-76.
|
5 |
FAZLI Y, SHARIATINIA Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats[J]. Materials Science and Engineering C, 2017, 71: 641-652.
|
6 |
赵海田, 李旭东, 曹凤芹, 等. 基于壳聚糖纳米粒子载药体系的制备与应用研究进展[J]. 化工进展, 2019, 38(11): 5057-5065.
|
|
ZHAO Haitian, LI Xudong, CAO Fengqin, et al. Advances in preparation and application of chitosan-based nanoparticles for drug delivery system[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5057-5065.
|
7 |
SHARIATINIA Z, NIKFAR Z. Synthesis and antibacterial activities of novel nanocomposite films of chitosan/phosphoramide/Fe3O4 NPs[J]. International Journal of Biological Macromolecules, 2013, 60: 226-234.
|
8 |
SHARIATINIA Z, MAZLOOM-JALALI A. Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations[J]. Journal of Molecular Liquids, 2019, 273: 346-367.
|
9 |
DE MORAES CRIZEL T, DE OLIVEIRA RIOS A, ALVES V D, et al. Active food packaging prepared with chitosan and olive pomace[J]. Food Hydrocolloids, 2018, 74: 139-150.
|
10 |
SHARIATINIA Z, FAZLI M. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch[J]. Food Hydrocolloids, 2015, 46: 112-124.
|
11 |
MU R H, LIU B, CHEN X, et al. Adsorption of Cu (Ⅱ) and Co (Ⅱ) from aqueous solution using lignosulfonate/chitosan adsorbent[J]. International Journal of Biological Macromolecules, 2020, 163: 120-127.
|
12 |
SUN Y J, CHEN A W, PAN S Y, et al. Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation[J]. Journal of Environmental Management, 2019, 248: 109241.
|
13 |
赵世鹏, 冯宗财, 袁爽, 等. 乙二胺丙酰化交联壳聚糖微球对甲基橙的吸附性能[J]. 化工学报, 2017, 68(3): 1253-1261.
|
|
ZHAO Shipeng, FENG Zongcai, YUAN Shuang, et al. Adsorption performance of ethylenediamine propionyl crosslinked chitosan microspheres to methyl orange[J]. CIESC Journal, 2017, 68(3): 1253-1261.
|
14 |
MOUADEN K E, CHAUHAN D S, QURAISHI M A, et al. Thiocarbohydrazide-crosslinked chitosan as a bioinspired corrosion inhibitor for protection of stainless steel in 3.5% NaCl[J]. Sustainable Chemistry and Pharmacy, 2020, 15: 100213.
|
15 |
CHAUHAN D S, MOUADEN K E, QURAISHI M A, et al. Aminotriazolethiol-functionalized chitosan as a macromolecule-based bioinspired corrosion inhibitor for surface protection of stainless steel in 3.5% NaCl[J]. International Journal of Biological Macromolecules, 2020, 152: 234-241.
|
16 |
HOLDER S L, LEE C H, POPURI S R, et al. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation[J]. Carbohydrate Polymers, 2016, 149: 251-262.
|
17 |
VIJAYALEKSHMI V, KHASTGIR D. Fabrication and comprehensive investigation of physicochemical and electrochemical properties of chitosan-silica supported silicotungstic acid nanocomposite membranes for fuel cell applications[J]. Energy, 2018, 142: 313-330.
|
18 |
KATIYAR R S, JHA P K. Phase behavior of aqueous polyacrylic acid solutions using atomistic molecular dynamics simulations of model oligomers[J]. Polymer, 2017, 114: 266-276.
|
19 |
WEI Q H, ZHANG Y F, WANG Y N, et al. A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends[J]. Journal of Materials Science, 2017, 52(21): 12889-12901.
|
20 |
杨帆. 离子液体对生物大分子结构稳定性影响的分子模拟研究[D]. 济南: 山东大学, 2021.
|
|
YANG Fan. The molecular simulation of the effects of ionic liquids on the structural stability of biological macromolecules[D]. Jinan: Shandong University, 2021.
|
21 |
唐赟, 李卫华, 盛亚运. 计算机分子模拟——2013年诺贝尔化学奖简介[J]. 自然杂志, 2013, 35(6): 408-415.
|
|
TANG Yun, LI Weihua, SHENG Yayun. Computer molecular modeling: a brief introduction to the Nobel Prize in Chemistry 2013[J]. Chinese Journal of Nature, 2013, 35(6): 408-415.
|
22 |
RAYCHAUDHURI S. Introduction to Monte Carlo simulation[C]//2008 Winter Simulation Conference. December 7-10, 2008, Miami, FL, USA. IEEE, 2008: 91-100.
|
23 |
ALEXANDER F J, GARCIA A L. The direct simulation Monte Carlo method[J]. Computers in Physics, 1997, 11(6): 588-593.
|
24 |
KIM H, ABEYSIRIGUNAWARDEN S C, CHEN K, et al. Protein-guided RNA dynamics during early ribosome assembly[J]. Nature, 2014, 506(7488): 334-338.
|
25 |
COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7): 3602-3608.
|
26 |
REN H, SHEN X, DAI J H, et al. On the mechanism of graphene quantum dot encapsulation by chitosan: a molecular dynamics study[J]. Journal of Molecular Liquids, 2020, 320: 113453.
|
27 |
李嘉辰, 俞斌, 王琦, 等. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360.
|
|
LI Jiachen, YU Bin, WANG Qi, et al. Molecular simulation on doxorubicin encapsulation and transport by chitosanboron nitride nanotubes[J]. CIESC Journal, 2020, 71(1): 354-360.
|
28 |
SOUSA C P, DE OLIVEIRA R C, FREIRE T M, et al. Chlorhexidine digluconate on chitosan-magnetic iron oxide nanoparticles modified electrode: electroanalysis and mechanistic insights by computational simulations[J]. Sensors and Actuators B: Chemical, 2017, 240: 417-425.
|
29 |
卢曦. 羧甲基壳聚糖的量子化学研究[D]. 西安: 西安建筑科技大学, 2011.
|
|
LU Xi. Quantum chemical study of carboxymethyl chitosan[D]. Xi’an: Xi’an University of Architecture and Technology, 2011.
|
30 |
WANG X S, LIN Q, PAN H Y, et al. Oxidation modification of chitosan-based mesoporous carbon by soft template method and the adsorption and release properties of hydroxycamptothecin[J]. Scientific Reports, 2020, 10: 15772.
|
31 |
WANG X S, PAN H Y, LIN Q, et al. One-step synthesis of nitrogen-doped hydrophilic mesoporous carbons from chitosan-based triconstituent system for drug release[J]. Nanoscale Research Letters, 2019, 14(1): 259.
|
32 |
ZHANG Y, CHU T J, SUN L, et al. Study on the transfection efficiency of chitosan-based gene vectors modified with poly-l-arginine peptides[J]. Journal of Biomedical Materials Research Part A, 2020, 108(12): 2409-2420.
|
33 |
YANG J Y, CHEN Y, ZHAO L, et al. Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing[J]. Composites B: Engineering, 2020, 197: 108139.
|
34 |
ZHANG H P, LUO X G, LIN X Y, et al. The molecular understanding of interfacial interactions of functionalized graphene and chitosan[J]. Applied Surface Science, 2016, 360: 715-721.
|
35 |
YU R, RAN M F, WEN J, et al. The effect of hydroxylation on CNT to form chitosan-CNT composites: a DFT study[J]. Applied Surface Science, 2015, 359: 643-650.
|
36 |
ZHAO J, XING T, LI Q, et al. Preparation of chitosan and carboxymethylcellulose-based polyelectrolyte complex hydrogel via SD-A-SGT method and its adsorption of anionic and cationic dye[J]. Journal of Applied Polymer Science, 2020, 137(34): 48980.
|
37 |
ZHANG H P, LUO X G, LIN X Y, et al. Polycaprolactone/chitosan blends: simulation and experimental design[J]. Materials & Design, 2016, 90: 396-402.
|
38 |
LIU Y, WONG C W, CHANG S W, et al. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing[J]. Acta Biomaterialia, 2021, 122: 211-219.
|
39 |
SHIROLKAR M M, ATHAVALE R, RAVINDRAN S, et al. Antibiotics functionalization intervened morphological, chemical and electronic modifications in chitosan nanoparticles[J]. Nano-Structures & Nano-Objects, 2021, 25: 100657.
|
40 |
DOMARD A. A perspective on 30 years research on chitin and chitosan[J]. Carbohydrate Polymers, 2011, 84(2): 696-703.
|
41 |
FRANCA E F, FREITAS L C G, LINS R D. Chitosan molecular structure as a function of N-acetylation[J]. Biopolymers, 2011, 95(7): 448-460.
|
42 |
TSERETELI L, GRAFMÜLLER A. An accurate coarse-grained model for chitosan polysaccharides in aqueous solution[J]. PLoS One, 2017, 12(7): e0180938.
|
43 |
TAYYEM M T, ZUGHUL M B, ALMATARNEH M H. Molecular dynamics simulation of N-octyl-N-quaternized chitosan derivatives as a drug carrier[J]. Journal of Theoretical and Computational Chemistry, 2018, 17(4): 1850025.
|
44 |
代俊明, 孙秀花, 高昌录. 共混改性法对有机分离膜影响进展[J]. 化工进展, 2019, 38(S1): 159-165.
|
|
DAI Junming, SUN Xiuhua, GAO Changlu. Advances on effects of blending modification on organic separation membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 159-165.
|
45 |
吴勰, 薛照明, 周莉, 等. 共混改性的PEO/TPU/PVDF-HFP基聚合物电解质的制备及性能[J]. 精细化工, 2021, 38(1): 155-161.
|
|
WU Xie, XUE Zhaoming, ZHOU Li, et al. Preparation and properties of blend modified PEO/TPU/PVDF-HFP-based polymer electrolyte[J]. Fine Chemicals, 2021, 38(1): 155-161.
|
46 |
SUKNUNTHA K, TANTISHAIYAKUL V, VAO-SOONGNERN V, et al. Molecular modeling simulation and experimental measurements to characterize chitosan and poly(vinyl pyrrolidone) blend interactions[J]. Journal of Polymer Science B: Polymer Physics, 2008, 46(12): 1258-1264.
|
47 |
RAKKAPAO N, VAO-SOONGNERN V. Molecular simulation and experimental studies of the miscibility of chitosan/poly(ethylene oxide) blends[J]. Journal of Polymer Research, 2014, 21(12): 1-10.
|
48 |
RAKKAPAO N, VAO-SOONGNERN V, MASUBUCHI Y, et al. Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction[J]. Polymer, 2011, 52(12): 2618-2627.
|
49 |
TIAN Y, SHI C J, SUN Y J, et al. Designing micellar nanocarriers with improved drug loading and stability based on solubility parameter[J]. Molecular Pharmaceutics, 2015, 12(3): 816-825.
|
50 |
JAWALKAR S S, RAJU K V S N, HALLIGUDI S B, et al. Molecular modeling simulations to predict compatibility of poly(vinyl alcohol) and chitosan blends: a comparison with experiments[J]. The Journal of Physical Chemistry B, 2007, 111(10): 2431-2439.
|
51 |
JAFARI F, MORADI S, NOWROOZI A, et al. Exploring the binding mechanism of paraquat to DNA by a combination of spectroscopic, cellular uptake, molecular docking and molecular dynamics simulation methods[J]. New Journal of Chemistry, 2017, 41(23): 14188-14198.
|
52 |
MORADI S, TARAN M, SHAHLAEI M. Investigation on human serum albumin and Gum Tragacanth interactions using experimental and computational methods[J]. International Journal of Biological Macromolecules, 2018, 107: 2525-2533.
|
53 |
NOWROOZI A, SHAHLAEI M. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3[J]. Journal of Biomolecular Structure & Dynamics, 2017, 35(2): 250-272.
|
54 |
ESLAMI M, NIKKHAH S J, HASHEMIANZADEH S M, et al. The compatibility of Tacrine molecule with poly(n-butylcyanoacrylate) and Chitosan as efficient carriers for drug delivery: a molecular dynamics study[J]. European Journal of Pharmaceutical Sciences, 2016, 82: 79-85.
|
55 |
KHEZRI A, KARIMI A, YAZDIAN F, et al. Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: emphasis on biofilm reduction[J]. International Journal of Biological Macromolecules, 2018, 114: 972-978.
|
56 |
RAZMIMANESH F, AMJAD-IRANAGH S, MODARRESS H. Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system[J]. Journal of Molecular Modeling, 2015, 21(7): 165.
|
57 |
MORADI S, HOSSEINI E, ABDOLI M, et al. Comparative molecular dynamic simulation study on the use of chitosan for temperature stabilization of interferon αII[J]. Carbohydrate Polymers, 2019, 203: 52-59.
|
58 |
SALAR S, JAFARI M, KABOLI S F, et al. The role of intermolecular interactions on the encapsulation of human insulin into the chitosan and cholesterol-grafted chitosan polymers[J]. Carbohydrate Polymers, 2019, 208: 345-355.
|
59 |
WANG X Y, ZHANG L, WEI X H, et al. Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates[J]. Biomaterials, 2013, 34(7): 1843-1851.
|
60 |
刘莉, 高亚男, 纪宏宇, 等. 壳聚糖类水凝胶在组织工程中的应用[J]. 医药导报, 2016, 35(9): 982-986.
|
|
LIU Li, GAO Yanan, JI Hongyu, et al. Application of chitosan hydrogels in tissue engineering[J]. Herald of Medicine, 2016, 35(9): 982-986.
|
61 |
LING Z X, DENG J, ZHANG Z R, et al. Spatiotemporal manipulation of L-arginine release from bioactive hydrogels initiates rapid skin wound healing accompanied with repressed scar formation[J]. Applied Materials Today, 2021, 24: 101116.
|
62 |
KUMAR P, PILLAY V, CHOONARA Y E. Macroporous chitosan/methoxypoly(ethylene glycol) based cryosponges with unique morphology for tissue engineering applications[J]. Scientific Reports, 2021, 11: 3104.
|
63 |
FUSTER M G, MONTALBÁN M G, CARISSIMI G, et al. Antibacterial effect of chitosan–gold nanoparticles and computational modeling of the interaction between chitosan and a lipid bilayer model[J]. Nanomaterials, 2020, 10(12): 2340.
|
64 |
MALEKSHAH R E, SHAKERI F, AALLAEI M, et al. Biological evaluation, proposed molecular mechanism through docking and molecular dynamic simulation of derivatives of chitosan[J]. International Journal of Biological Macromolecules, 2021, 166: 948-966.
|
65 |
KRAYTSBERG A, EIN-ELI Y. Review of advanced materials for proton exchange membrane fuel cells[J]. Energy & Fuels, 2014, 28(12): 7303-7330.
|
66 |
PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9349-9384.
|
67 |
IKRAM S, AHMED S, WAZED ALI S, et al. Chitosan-based polymer electrolyte membranes for fuel cell applications[M]//Organic-Inorganic Composite Polymer Electrolyte Membranes. Cham: Springer International Publishing, 2017: 381-398.
|
68 |
CHÁVEZ E L, OVIEDO-ROA R, CONTRERAS-PÉREZ G, et al. Theoretical studies of ionic conductivity of crosslinked chitosan membranes[J]. International Journal of Hydrogen Energy, 2010, 35(21): 12141-12146.
|
69 |
SRINOPHAKUN T, MARTKUMCHAN S. Ionic conductivity in a chitosan membrane for a PEM fuel cell using molecular dynamics simulation[J]. Carbohydrate Polymers, 2012, 88(1): 194-200.
|
70 |
ZHANG H P, GANDHI N S, GU Y T, et al. Chitosan/graphene complex membrane for polymer electrolyte membrane fuel cell: a molecular dynamics simulation study[J]. International Journal of Hydrogen Energy, 2020, 45(48): 25960-25969.
|
71 |
KUMAR R, KIM H, SINGH G. Experimental and theoretical investigations of a newly synthesized azomethine compound as inhibitor for mild steel corrosion in aggressive media: a comprehensive study[J]. Journal of Molecular Liquids, 2018, 259: 199-208.
|
72 |
UMOREN S A, ALAHMARY A A, GASEM Z M, et al. Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel[J]. International Journal of Biological Macromolecules, 2018, 117: 1017-1028.
|
73 |
PRABAKARAN M, KIM S H, MUGILA N, et al. Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid[J]. Journal of Industrial and Engineering Chemistry, 2017, 52: 235-242.
|
74 |
郑云香, 王向鹏, 宗丽娜. 天然多糖及衍生物在金属缓蚀剂中的研究进展[J]. 表面技术, 2021, 50(2): 221-231.
|
|
ZHENG Yunxiang, WANG Xiangpeng, ZONG Lina. Advance on natural polysaccharides and its derivatives in metal corrosion inhibition[J]. Surface Technology, 2021, 50(2): 221-231.
|
75 |
ZHAO Q, GUO J X, CUI G D, et al. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111150.
|
76 |
CHAUHAN D S, MAZUMDER M A J, QURAISHI M A, et al. Chitosan-cinnamaldehyde Schiff base: a bioinspired macromolecule as corrosion inhibitor for oil and gas industry[J]. International Journal of Biological Macromolecules, 2020, 158: 127-138.
|
77 |
JMIAI A, IBRAHIMI B EL, TARA A, et al. The effect of the two biopolymers “sodium alginate and chitosan” on the inhibition of copper corrosion in 1M hydrochloric acid[J]. Materials Today: Proceedings, 2020, 22: 12-15.
|
78 |
HAQUE J, SRIVASTAVA V, CHAUHAN D S, et al. Microwave-induced synthesis of chitosan schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach[J]. ACS Omega, 2018, 3(5): 5654-5668.
|
79 |
CHAUHAN D S, QURAISHI M A, SOROUR A A, et al. Triazole-modified chitosan: a biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution[J]. RSC Advances, 2019, 9(26): 14990-15003.
|
80 |
SAHARAN P, KUMAR V, SHARMA A K, et al. Scalable fabrication of chitosan-grafted silica bionanocomposite for the superb sequestration of anionic dye from aqueous solution[J]. Emergent Materials, 2020, 3(6): 871-879.
|
81 |
VIJAYASRI K, TIWARI A. Chemical and radiation grafted chitosan for the mitigation of arsenic from contaminated water[J]. Journal of Dispersion Science and Technology, 2020, 41(7): 967-979.
|
82 |
CHANAJAREE R, SRIUTTHA M, LEE V S, et al. Thermodynamics and kinetics of cationic/anionic dyes adsorption on cross-linked chitosan[J]. Journal of Molecular Liquids, 2021, 322: 114507.
|
83 |
UDOETOK I A, FAYE O, WILSON L D. Adsorption of phosphate dianions by hybrid inorganic–biopolymer polyelectrolyte complexes: experimental and computational studies[J]. ACS Applied Polymer Materials, 2020, 2(2): 899-910.
|
84 |
REZAKAZEMI M, ALBADARIN A B, WALKER G M, et al. Quantum chemical calculations and molecular modeling for methylene blue removal from water by a lignin-chitosan blend[J]. International Journal of Biological Macromolecules, 2018, 120: 2065-2075.
|
85 |
KHNIFIRA M, BOUMYA W, ABDENNOURI M, et al. A combined molecular dynamic simulation, DFT calculations, and experimental study of the eriochrome black T dye adsorption onto chitosan in aqueous solutions[J]. International Journal of Biological Macromolecules, 2021, 166: 707-721.
|
86 |
SUN W Y, ZENG H B, TANG T. Synergetic adsorption of polymers on montmorillonite: insights from molecular dynamics simulations[J]. Applied Clay Science, 2020, 193: 105654.
|
87 |
HASSAN B, RAJAN V K, MUJEEB V M A, et al. A DFT based analysis of adsorption of Hg2+ ion on chitosan monomer and its citralidene and salicylidene derivatives: prior to the removal of Hg toxicity[J]. International Journal of Biological Macromolecules, 2017, 99: 549-554.
|
88 |
王炳捷, 白志山, 杨晓勇. 离子印迹吸附微球微流控制备及DFT性能[J]. 工程科学与技术, 2019, 51(6): 36-43.
|
|
WANG Bingjie, BAI Zhishan, YANG Xiaoyong. Microfluidical-synthesis and quantum chemistry insight into ionic imprinted chitosan adsorbents[J]. Advanced Engineering Sciences, 2019, 51(6): 36-43.
|