Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 5936-5945.DOI: 10.16085/j.issn.1000-6613.2022-0221
• Materials science and technology • Previous Articles Next Articles
YU Xinghai1,2(), TANG Haiwei1,3, LI Yan’an1,3, HAN Yuqi1,3, MIN Xuemei1,3
Received:
2022-02-11
Revised:
2022-05-17
Online:
2022-11-28
Published:
2022-11-25
Contact:
YU Xinghai
禹兴海1,2(), 唐海慰1,3, 李艳安1,3, 韩玉琦1,3, 闵雪梅1,3
通讯作者:
禹兴海
作者简介:
禹兴海(1978—),男,博士,教授,研究方向为高分子复合材料。E-mail:yuxinghai455@163.com。
基金资助:
CLC Number:
YU Xinghai, TANG Haiwei, LI Yan’an, HAN Yuqi, MIN Xuemei. Electro- and photo-driven phase change composites based on stearic acid-infiltrated biochar[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5936-5945.
禹兴海, 唐海慰, 李艳安, 韩玉琦, 闵雪梅. 一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能[J]. 化工进展, 2022, 41(11): 5936-5945.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0221
项目 | BC | KBC-1 (1∶3) | KBC-2 (1∶4) | KBC-3 (1∶5) |
---|---|---|---|---|
比表面积/m²·g-1 | 3.64 | 1621.31 | 1680.21 | 2136.67 |
孔容/ cm³·g-1 | 0.003 | 0.91 | 0.96 | 1.35 |
孔径 /nm | 2.68 | 28.36 | 35.94 | 39.62 |
项目 | BC | KBC-1 (1∶3) | KBC-2 (1∶4) | KBC-3 (1∶5) |
---|---|---|---|---|
比表面积/m²·g-1 | 3.64 | 1621.31 | 1680.21 | 2136.67 |
孔容/ cm³·g-1 | 0.003 | 0.91 | 0.96 | 1.35 |
孔径 /nm | 2.68 | 28.36 | 35.94 | 39.62 |
SA 质量分数/% | 熔融温度Tm/℃ | 熔融焓 ΔfH/J·g-1 | 结晶温度 Tc/℃ | 结晶焓 ΔcH/J·g-1 |
---|---|---|---|---|
纯SA | 58.9 | 175.6 | 48.5 | -177.8 |
25.9 | 54.8 | 33.4 | 44.5 | -34.2 |
46.0 | 56.7 | 81.9 | 44.8 | -85.8 |
58.7 | 56.7 | 88.0 | 50.0 | -89.6 |
71.2 | 55.1 | 126.3 | 44.6 | -128.7 |
SA 质量分数/% | 熔融温度Tm/℃ | 熔融焓 ΔfH/J·g-1 | 结晶温度 Tc/℃ | 结晶焓 ΔcH/J·g-1 |
---|---|---|---|---|
纯SA | 58.9 | 175.6 | 48.5 | -177.8 |
25.9 | 54.8 | 33.4 | 44.5 | -34.2 |
46.0 | 56.7 | 81.9 | 44.8 | -85.8 |
58.7 | 56.7 | 88.0 | 50.0 | -89.6 |
71.2 | 55.1 | 126.3 | 44.6 | -128.7 |
BC/SA 循环次数 | 熔融温度Tm/℃ | 熔融焓 ΔfH/J·g-1 | 结晶温度 Tc/℃ | 结晶焓 ΔcH/J·g-1 |
---|---|---|---|---|
1 | 55.1 | 126.3 | 44.6 | -128.7 |
50 | 55.4 | 113.6 | 44.5 | -115.2 |
100 | 55.2 | 109.8 | 44.8 | -112.6 |
BC/SA 循环次数 | 熔融温度Tm/℃ | 熔融焓 ΔfH/J·g-1 | 结晶温度 Tc/℃ | 结晶焓 ΔcH/J·g-1 |
---|---|---|---|---|
1 | 55.1 | 126.3 | 44.6 | -128.7 |
50 | 55.4 | 113.6 | 44.5 | -115.2 |
100 | 55.2 | 109.8 | 44.8 | -112.6 |
1 | DA CUNHA Sandra Raquel Leite, DE AGUIAR José Luís Barroso. Phase change materials and energy efficiency of buildings: a review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083. |
2 | WU Wenhao, HUANG Xinyu, LI Kai, et al. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion[J]. Applied Energy, 2017, 190: 474-480. |
3 | 赵梦阳, 张宇昂, 唐炳涛. 聚氨酯型复合定形相变储能材料研究进展[J]. 精细化工, 2020, 37(11): 2182-2192, 2215. |
ZHAO Mengyang, ZHANG Yu’ang, TANG Bingtao. Research process in polyurethane form-stable composite phase change materials[J]. Fine Chemicals, 2020, 37(11): 2182-2192, 2215. | |
4 | 陈之帆, 孙志高, 汤小蒙, 等. 硬脂酸/十八醇/乙酸钠复合相变材料蓄/放热性能[J]. 化工进展, 2019, 38(4): 1833-1838. |
CHEN Zhifan, SUN Zhigao, TANG Xiaomeng, et al. Study on the charging and discharging characteristics of stearic acid/stearyl alcohol/sodium acetate composite phase change materials[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1833-1838. | |
5 | 陈琼霞, 熊德元, 王军正. 石蜡/介孔复合相变材料的制备及其热性能[J]. 精细化工, 2014, 31(2): 152-156. |
CHEN Qiongxia, XIONG Deyuan, WANG Junzheng. Preparation and thermal performance of paraffin/mesoporous composite phase change material[J]. Fine Chemicals, 2014, 31(2): 152-156. | |
6 | YU Dehai, HE Zhizhu. Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management[J]. Applied Energy, 2019, 247: 503-516. |
7 | 鄢冬茂, 蔡文蓉, 殷国强, 等. PEG/APS-SiO2/O-CNTs导热增强相变材料的制备及性能[J]. 精细化工, 2021, 38(4): 729-735. |
YAN Dongmao, CAI Wenrong, YIN Guoqiang, et al. Preparation and properties of PEG/APS-SiO2/O-CNTs phase change materials with enhanced thermal conductivity[J]. Fine Chemicals, 2021, 38(4): 729-735. | |
8 | 舒钊, 钟珂, 肖鑫, 等. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
SHU Zhao, ZHONG Ke, XIAO Xin, et al. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278. | |
9 | 何起帆, 吴闽强, 李廷贤, 等. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545. |
HE Qifan, WU Minqiang, LI Tingxian, et al. Preparation and thermophysical properties of octadecane/OBC/EG composite shaped phase change material[J]. CIESC Journal, 2021, 72(S1): 539-545. | |
10 | 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7): 674-683. |
ZHAI Tianyao, LI Tingxian, WU Si, et al. Preparation and thermal performance of form-stable expanded graphite/stearic acid composite phase change materials with high thermal conductivity[J]. Chinese Science Bulletin, 2018, 63(7): 674-683. | |
11 | 杨岳澔, 程晓敏, 李丹, 等. 硬脂酸/改性碳纳米管复合相变储热材料性能[J]. 储能科学与技术, 2019, 8(4): 759-763. |
YANG Yuehao, CHENG Xiaomin, LI Dan, et al. Properties of stearic acid/modified carbon nanotube composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(4): 759-763. | |
12 | 周建伟, 张引沁, 史磊, 等. 石蜡/MCM-41复合相变材料的结构及热性能[J]. 精细化工, 2011, 28(12): 1150-1153. |
ZHOU Jianwei, ZHANG Yinqin, SHI Lei, et al. Structure and thermal performance of paraffin/MCM-41 composite phase change material[J]. Fine Chemicals, 2011, 28(12): 1150-1153. | |
13 | 徐众, 侯静, 李军, 等. 膨胀石墨/有机质复合相变材料的制备及性能[J]. 化工进展, 2020, 39(7): 2758-2767. |
XU Zhong, HOU Jing, LI Jun, et al. Preparation and performances of expanded graphite/organic matter composite phase change materials[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2758-2767. | |
14 | FENG Yanhui, WEI Runzhi, HUANG Zhi, et al. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials[J]. Physical Chemistry Chemical Physics, 2018, 20(11): 7772-7780. |
15 | MENG Xin, ZHANG Huanzhi, SUN Lixian, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(1): 377-384. |
16 | FANG Xin, FAN Liwu, DING Qing, et al. Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets[J]. Energy & Fuels, 2013, 27(7): 4041-4047. |
17 | 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432. |
LI Xinghui, CHEN Minzhi, ZHOU Xiaoyan. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1422-1432. | |
18 | ZHANG Yuang, UMAIR Malik Muhammad, ZHANG Shufen, et al. Phase change materials for electron-triggered energy conversion and storage: a review[J]. Journal of Materials Chemistry A, 2019, 7(39): 22218-22228. |
19 | WORSLEY Marcus A, CHARNVANICHBORIKARN Supakit, MONTALVO Elizabeth, et al. Toward macroscale, isotropic carbons with graphene-sheet-like electrical and mechanical properties[J]. Advanced Functional Materials, 2014, 24(27): 4259-4264. |
20 | TANG Gongqing, JIANG Zhiguo, LI Xiaofeng, et al. Three dimensional graphene aerogels and their electrically conductive composites[J]. Carbon, 2014, 77: 592-599. |
21 | TAO Ying, XIE Xiaoying, Wei LYu, et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3: 2975. |
22 | YANG Jing, LI Xiaofeng, HAN Shuang, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. Journal of Materials Chemistry A, 2016, 4(46): 18067-18074. |
23 | KIM Hye Bin, KIM Jong Gook, KIM Taesun, et al. Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature[J]. Chemical Engineering Journal, 2021, 411: 128441. |
24 | Cuong NGUYEN X, T Thanh Huyen NGUYEN, NGUYEN T Hong Chuong, et al. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water[J]. Chemosphere, 2021, 282: 131009. |
25 | ZHANG Ying, CAO Bo, ZHAO Lulu, et al. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions[J]. Applied Surface Science, 2018, 427: 147-155. |
26 | ZHU Guocheng, LIN Jialin, YUAN Qian, et al. A biochar supported magnetic metal organic framework for the removal of trivalent antimony[J]. Chemosphere, 2021, 282: 131068. |
27 | MOHAMED Ibrahim, Rasha EL-MEIHY, Maha ALI, et al. Interactive effects of biochar and micronutrients on faba bean growth, symbiotic performance, and soil properties[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(5): 802. |
28 | TAN Bo, HUANG Zhaohui, YIN Zhaoyu, et al. Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato[J]. RSC Advances, 2016, 6(19): 15821-15830. |
29 | WAN Yechao, CHEN Yan, CUI Zhixing, et al. A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage[J]. Scientific Reports, 2019, 9(1): 11535. |
30 | ATINAFU Dimberu G, Seunghwan WI, YUN Beom Yeol, et al. Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage[J]. Energy, 2021, 216: 119294. |
31 | KARAIPEKLI Ali, Ahmet SAR, KAYGUSUZ Kamil. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007, 32(13): 2201-2210. |
32 | ZHANG Xialan, WANG Xin, ZHONG Changhe, et al. Ultrathin-wall mesoporous surface carbon foam stabilized stearic acid as a desirable phase change material for thermal energy storage[J]. Journal of Industrial and Engineering Chemistry, 2020, 85: 208-218. |
33 | LIANG Gengyuan, ZHANG Jianwei, AN Shaohang, et al. Phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management[J]. Carbon, 2021, 176: 11-20. |
34 | LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism[J]. Carbon, 2003, 41(2): 267-275. |
35 | WANG Wentao, UMAIR Malik Muhammad, QIU Jinjing, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites[J]. Energy Conversion and Management, 2019, 196: 1299-1305. |
36 | CHEN Liangjie, ZOU Ruqiang, XIA Wei, et al. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6(12): 10884-10892. |
37 | CHEN Liangjie, ZOU Ruqiang, XIA Wei, et al. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6(12): 10884-10892. |
38 | YANG Jie, TANG Lisheng, BAO Ruiying, et al. Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets[J]. Chemical Engineering Journal, 2017, 315: 481-490. |
39 | CAO Xiaoyin, WU Shujuan, YANG Lijuan, et al. Novel composite phase change materials based on hollow carbon nanospheres supporting fatty amines with high light-to-thermal transition efficiency[J]. Solar Energy Materials and Solar Cells, 2021, 225: 111035. |
40 | XU L, ZHAO Q H, LI Y S, et al. Nanodiamond-modified microencapsulated phase-change materials with superhydrophobicity and high light-to-thermal conversion efficiency[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21736-21744. |
41 | ZHANG Yuang, WANG Jiasheng, QIU Jinjing, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity[J]. Applied Energy, 2019, 237: 83-90. |
42 | LI Guangyong, ZHANG Xuetong, WANG Jin, et al. From anisotropic graphene aerogels to electron- and photo-driven phase change composites[J]. Journal of Materials Chemistry A, 2016, 4(43): 17042-17049. |
43 | Chen Liangjie, ZOU Ruqiang, XIA Wei, et al. Electro- and photo-driven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6, 10884-10892. |
44 | GUO Xinfeng, LIU Cui, LI Nian, et al. Electrothermal conversion phase change composites: the case of polyethylene glycol infiltrated graphene oxide/carbon nanotube networks[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15697-15702. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[3] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[4] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[5] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[6] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[7] | HU Zhaoyan, ZHANG Jingxin, HE Yiliang. Catalytic pyrolysis of polypropylene plastics and product properties with Fe-loaded sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 631-640. |
[8] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
[9] | WANG Shuyan, ZHANG Xinbo, PENG Anping, LIU Yang, HAO NGO HUU, GUO Wenshan, WEN Haitao. Research progress and challenges in recovery of nitrogen and phosphorus nutrients from water by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5459-5469. |
[10] | SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458. |
[11] | YANG Liu, WANG Mingwei, ZHANG Yaobin. Magnetite-loaded biochar for enhanced anaerobic microbial treatment of 2,4-dichlorophenol wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5065-5073. |
[12] | HUANG Xia, HE Yingying, ZHANG Yidie, YANG Dianhai, DAI Xiaohu, XIE Li. Research progress on enhancing resource utilization of organic solid waste aerobic composting based on biochar [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4544-4554. |
[13] | PAN Weiliang, WU Qiye, CAO Yunpeng, ZHANG Xianbing, GU Li, HE Qiang. Improvement of nitrate removal and nitrogen selectivity by the synergy of nZVI/BC and (Cu-Pd)/BC [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 981-989. |
[14] | ZHOU Taotao, XIONG Zhibo, WU Zhigen, LI Shang. Characters of electric resistance and heating of expanded graphite/paraffin composite phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 892-900. |
[15] | CHEN Yiping, HUANG Yaoyi, ZHENG Chaohong. Research progress of collagen-derived carbon in water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6606-6614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |