Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3925-3937.DOI: 10.16085/j.issn.1000-6613.2021-1900
• Resources and environmental engineering • Previous Articles Next Articles
DUAN Zhengyang1(), HU Ningmeng1, LI Tianguo2()
Received:
2021-09-06
Revised:
2021-10-24
Online:
2022-07-23
Published:
2022-07-25
Contact:
LI Tianguo
通讯作者:
李天国
作者简介:
段正洋(1990—),男,博士,讲师,主要从事含重金属及染料污染水体控制与治理方面的研究。E-mail:基金资助:
CLC Number:
DUAN Zhengyang, HU Ningmeng, LI Tianguo. Preparation of xanthate-functionalized cross-linked baker's yeast and its adsorption characteristics for Pb(Ⅱ)[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3925-3937.
段正洋, 胡柠檬, 李天国. 黄原酸改性交联面包酵母的制备及对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2022, 41(7): 3925-3937.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1900
C0/mg·L -1 | qe, exp/mg·g -1 | 伪一阶动力学模型 | 伪二阶动力学模型 | ||||
---|---|---|---|---|---|---|---|
qe/mg·g -1 | k1/min -1 | R2 | qe/mg·g -1 | k2/g·mg -1·min -1 | R2 | ||
25 | 117.78 | 112.25 | 0.285 | 0.9788 | 119.21 | 0.00367 | 0.9995 |
50 | 231.77 | 222.28 | 0.320 | 0.9749 | 235.04 | 0.00214 | 0.9991 |
100 | 307.58 | 296.96 | 0.509 | 0.9757 | 309.93 | 0.00280 | 0.9988 |
200 | 317.10 | 308.74 | 0.537 | 0.9785 | 321.62 | 0.00289 | 0.9989 |
C0/mg·L -1 | qe, exp/mg·g -1 | 伪一阶动力学模型 | 伪二阶动力学模型 | ||||
---|---|---|---|---|---|---|---|
qe/mg·g -1 | k1/min -1 | R2 | qe/mg·g -1 | k2/g·mg -1·min -1 | R2 | ||
25 | 117.78 | 112.25 | 0.285 | 0.9788 | 119.21 | 0.00367 | 0.9995 |
50 | 231.77 | 222.28 | 0.320 | 0.9749 | 235.04 | 0.00214 | 0.9991 |
100 | 307.58 | 296.96 | 0.509 | 0.9757 | 309.93 | 0.00280 | 0.9988 |
200 | 317.10 | 308.74 | 0.537 | 0.9785 | 321.62 | 0.00289 | 0.9989 |
t /℃ | qe, exp/mg·g -1 | Langmuir模型 | Freundlich模型 | Langmuir-Freundlich模型 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
qmax/mg·g -1 | KL /L·mg -1 | R2 | KF /mg·g -1 | n | R2 | qmax /mg·g -1 | KLF/L·mg -1 | nLF | R2 | ||
25 | 306.51 | 308.95 | 0.433 | 0.9972 | 122.38 | 4.746 | 0.9217 | 317.79 | 0.392 | 0.868 | 0.9988 |
30 | 317.87 | 319.91 | 0.496 | 0.9927 | 131.23 | 4.906 | 0.9069 | 323.59 | 0.478 | 0.932 | 0.9922 |
35 | 321.90 | 322.39 | 0.871 | 0.9954 | 149.63 | 5.531 | 0.9103 | 331.11 | 0.795 | 0.829 | 0.9982 |
t /℃ | qe, exp/mg·g -1 | Langmuir模型 | Freundlich模型 | Langmuir-Freundlich模型 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
qmax/mg·g -1 | KL /L·mg -1 | R2 | KF /mg·g -1 | n | R2 | qmax /mg·g -1 | KLF/L·mg -1 | nLF | R2 | ||
25 | 306.51 | 308.95 | 0.433 | 0.9972 | 122.38 | 4.746 | 0.9217 | 317.79 | 0.392 | 0.868 | 0.9988 |
30 | 317.87 | 319.91 | 0.496 | 0.9927 | 131.23 | 4.906 | 0.9069 | 323.59 | 0.478 | 0.932 | 0.9922 |
35 | 321.90 | 322.39 | 0.871 | 0.9954 | 149.63 | 5.531 | 0.9103 | 331.11 | 0.795 | 0.829 | 0.9982 |
吸附剂 | 吸附量/mg·g -1 | 参考文献 |
---|---|---|
黄原酸改性交联面包酵母 | 319.91 | 本研究 |
黄原酸改性壳聚糖海绵 | 216.45 | [ |
黄原酸改性纤维素 | 531.29 | [ |
黄原酸改性玉米秸秆 | 20.58 | [ |
黄原酸改性多孔木质素 | 64.90 | [ |
黄原酸功能化蛋壳膜 | 33.11 | [ |
黄原酸改性交联淀粉 | 47.11 | [ |
黄原酸改性交联磁性壳聚糖/聚乙烯醇颗粒 | 59.86 | [ |
黄原酸改性多壁纳米碳管 | 83.01 | [ |
超声协助黄原酸改性纤维素 | 134.41 | [ |
黄原酸改性板栗壳 | 124.84 | [ |
吸附剂 | 吸附量/mg·g -1 | 参考文献 |
---|---|---|
黄原酸改性交联面包酵母 | 319.91 | 本研究 |
黄原酸改性壳聚糖海绵 | 216.45 | [ |
黄原酸改性纤维素 | 531.29 | [ |
黄原酸改性玉米秸秆 | 20.58 | [ |
黄原酸改性多孔木质素 | 64.90 | [ |
黄原酸功能化蛋壳膜 | 33.11 | [ |
黄原酸改性交联淀粉 | 47.11 | [ |
黄原酸改性交联磁性壳聚糖/聚乙烯醇颗粒 | 59.86 | [ |
黄原酸改性多壁纳米碳管 | 83.01 | [ |
超声协助黄原酸改性纤维素 | 134.41 | [ |
黄原酸改性板栗壳 | 124.84 | [ |
温度/℃ | Kd/cm3·g -1 | ΔG?/kJ·mol -1 | ΔH? /kJ·mol -1 | ΔS?/J·mol -1·K -1 |
---|---|---|---|---|
25 | 4.639 | -3.803 | 17.29 | 70.04 |
30 | 5.565 | -4.325 | ||
35 | 5.709 | -4.463 |
温度/℃ | Kd/cm3·g -1 | ΔG?/kJ·mol -1 | ΔH? /kJ·mol -1 | ΔS?/J·mol -1·K -1 |
---|---|---|---|---|
25 | 4.639 | -3.803 | 17.29 | 70.04 |
30 | 5.565 | -4.325 | ||
35 | 5.709 | -4.463 |
1 | WANG N N, XU X J, LI H Y, et al. Enhanced selective adsorption of Pb(Ⅱ) from aqueous solutions by one-pot synthesis of xanthate-modified chitosan sponge: behaviors and mechanisms[J]. Industrial & Engineering Chemistry Research, 2016, 55(47): 12222-12231. |
2 | WANG N N, XU X J, LI H Y, et al. Preparation and application of a xanthate-modified thiourea chitosan sponge for the removal of Pb(Ⅱ) from aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 4960-4968. |
3 | JIA Q J, ZHANG W T, LI D P, et al. Hydrazinolyzed cellulose-g-polymethyl acrylate as adsorbent for efficient removal of Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solution[J]. Water Science and Technology, 2017, 75(5): 1051-1058. |
4 | 徐大勇, 张苗, 杨伟伟, 等. 氧化铝改性污泥生物炭粒制备及其对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2020, 39(3): 1153-1166. |
XU Dayong, ZHANG Miao, YANG Weiwei, et al. Preparation of alumina modified sludge biocharcoal particles and their adsorption characteristics for Pb(Ⅱ)[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1153-1166. | |
5 | PENG X L, XU F, ZHANG W Z, et al. Magnetic Fe3O4@silica-xanthan gum composites for aqueous removal and recovery of Pb2+ [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443: 27-36. |
6 | 刘江龙, 郭焱, 席艺慧. FeCl3和十六烷基三甲基溴化铵改性赤泥对水中铜离子的吸附性能和机理[J]. 化工进展, 2020, 39(2): 776-789. |
LIU Jianglong, GUO Yan, XI Yihui. Adsorption and mechanism of copper ions in water by red mud modified with FeCl3 and hexadecyl trimethyl ammonium bromide (CTAB)[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 776-789. | |
7 | ZONG P F, CAO D L, WANG S F, et al. Synthesis of Fe3O4/CD magnetic nanocomposite via low temperature plasma technique with high enrichment of Ni(Ⅱ) from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 134-140. |
8 | ZHOU G Y, LUO J M, LIU C B, et al. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent[J]. Water Research, 2016, 89: 151-160. |
9 | YUAN M L, XIE T F, YAN G J, et al. Effective removal of Pb2+ from aqueous solutions by magnetically modified zeolite[J]. Powder Technology, 2018, 332: 234-241. |
10 | KUL A R, KOYUNCU H. Adsorption of Pb(Ⅱ) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 332-339. |
11 | OKOLI C P, DIAGBOYA P N, ANIGBOGU I O, et al. Competitive biosorption of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis)[J]. Environmental Earth Sciences, 2016, 76(1): 33-42. |
12 | TONG M, YU J X, SUN X M, et al. Polymer modified biomass of baker’s yeast for treating simulated wastewater containing nickel and lead[J]. Polymers for Advanced Technologies, 2007, 18(10): 829-834. |
13 | XIA Y X, MENG L Y, JIANG Y J, et al. Facile preparation of MnO2 functionalized baker’s yeast composites and their adsorption mechanism for Cadmium[J]. Chemical Engineering Journal, 2015, 259: 927-935. |
14 | ZHANG W, MENG L Y, MU G Q, et al. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (Ⅱ) ions[J]. Applied Surface Science, 2016, 378: 196-206. |
15 | GÖKSUNGUR Y, ÜREN S, GÜVENÇ U. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass[J]. Bioresource Technology, 2005, 96(1): 103-109. |
16 | LI T T, LIU Y G, PENG Q Q, et al. Removal of lead(Ⅱ) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: kinetic and equilibrium modeling[J]. Chemical Engineering Journal, 2013, 214: 189-197. |
17 | XU M, ZHANG Y S, ZHANG Z M, et al. Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride[J]. Chemical Engineering Journal, 2011, 168(2): 737-745. |
18 | BEDIAKO J K, WEI W, KIM S, et al. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber[J]. Journal of Hazardous Materials, 2015, 299: 550-561. |
19 | VIEIRA M G A, NETO A F A, GIMENES M L, et al. Removal of nickel on Bofe bentonite calcined clay in porous bed[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 109-118. |
20 | ÁLVAREZ-AYUSO E, GARCÍA-SÁNCHEZ A. Removal of heavy metals from waste waters by natural and Na-exchanged bentonites[J]. Clays and Clay Minerals, 2003, 51(5): 475-480. |
21 | OUARDI Y EL, LENOBLE V, BRANGER C, et al. Enhancing clay adsorption properties: a comparison between chemical and combined chemical/thermal treatments[J]. Groundwater for Sustainable Development, 2021, 12: 100544. |
22 | ZHU Y H, HU J, WANG J L. Competitive adsorption of Pb(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) onto xanthate-modified magnetic chitosan[J]. Journal of Hazardous Materials, 2012, 221/222: 155-161. |
23 | DENG S B, TING Y P. Characterization of PEI-modified biomass and biosorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ)[J]. Water Research, 2005, 39(10): 2167-2177. |
24 | XIA L, HU Y X, ZHANG B H. Kinetics and equilibrium adsorption of copper(Ⅱ) and nickel(Ⅱ) ions from aqueous solution using sawdust xanthate modified with ethanediamine[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3): 868-875. |
25 | ZHENG L C, MENG P P. Preparation, characterization of corn stalk xanthates and its feasibility for Cd (Ⅱ) removal from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 391-400. |
26 | LIANG S, GUO X Y, FENG N C, et al. Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions[J]. Journal of Hazardous Materials, 2009, 170(1): 425-429. |
27 | KANNAMBA B, REDDY K L, APPARAO B V. Removal of Cu(Ⅱ) from aqueous solutions using chemically modified chitosan[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 939-948. |
28 | LAGERGREN S. Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens[J]. Handlingar, 1898, 24(4): 1-39. |
29 | HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465. |
30 | CHEN Y W, WANG J L. The characteristics and mechanism of Co(Ⅱ) removal from aqueous solution by a novel xanthate-modified magnetic chitosan[J]. Nuclear Engineering and Design, 2012, 242: 452-457. |
31 | KAMARI A, NGAH W S W. Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan[J]. Colloids and Surfaces B: Biointerfaces, 2009, 73(2): 257-266. |
32 | LI Z L, KONG Y, GE Y Y. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution[J]. Chemical Engineering Journal, 2015, 270: 229-234. |
33 | LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403. |
34 | FREUNDLICH H. Of the adsorption of gases. Section Ⅱ. Kinetics and energetics of gas adsorption. Introductory paper to section Ⅱ[J]. Transactions of the Faraday Society, 1932, 28: 195. |
35 | SIPS R. Combined form of Langmuir and freundlich equations[J]. Journal of Chemical Physics, 1948, 16: 490-495. |
36 | GUERRA D J L, MELLO I, RESENDE R, et al. Application as absorbents of natural and functionalized Brazilian bentonite in Pb2+ adsorption: equilibrium, kinetic, pH, and thermodynamic effects[J]. Water Resources and Industry, 2013, 4: 32-50. |
37 | 邹雪, 龚正君. 黄原酸功能化蛋壳膜及其对Pb(Ⅱ)的吸附研究[J]. 西南大学学报(自然科学版), 2020, 42(11): 141-146. |
ZOU Xue, GONG Zhengjun. Study on adsorption removal of Pb(Ⅱ) by xanthated eggshell membrane[J]. Journal of Southwest University (Natural Science Edition), 2020, 42(11): 141-146. | |
38 | FENG K, WEN G H. Absorbed Pb2+ and Cd2+ ions in water by cross-linked starch xanthate[J]. International Journal of Polymer Science, 2017, 2017: 1-9. |
39 | LV L, CHEN N, FENG C P, et al. Heavy metal ions removal from aqueous solution by xanthate-modified cross-linked magnetic chitosan/poly(vinyl alcohol) particles[J]. RSC Advances, 2017, 7(45): 27992-28000. |
40 | GAO T T, YU J G, ZHOU Y, et al. Performance of xanthate-modified multi-walled carbon nanotubes on adsorption of lead ions[J]. Water, Air, & Soil Pollution, 2017, 228(5): 172-183. |
41 | WANG C Q, WANG H, GU G H. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(Ⅱ) sorption[J]. Carbohydrate Polymers, 2018, 182: 21-28. |
42 | CHEN M, WANG X F, ZHANG H. Comparative research on selective adsorption of Pb(Ⅱ) by biosorbents prepared by two kinds of modifying waste biomass: highly-efficient performance, application and mechanism[J]. Journal of Environmental Management, 2021, 288: 112388. |
43 | EVERETT D H. The thermodynamics of adsorption. Part Ⅱ.—Thermodynamics of monolayers on solids[J]. Transactions of the Faraday Society, 1950, 46: 942-957. |
44 | DENG J Q, LIU Y G, LIU S B, et al. Competitive adsorption of Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ) onto chitosan-pyromellitic dianhydride modified biochar[J]. Journal of Colloid and Interface Science, 2017, 506: 355-364. |
45 | GÖK Ö, ÖZCAN A, ERDEM B, et al. Prediction of the kinetics, equilibrium and thermodynamic parameters of adsorption of copper(Ⅱ) ions onto 8-hydroxy quinoline immobilized bentonite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 174-185. |
46 | QIN F, BAI B, JING D W, et al. CdS nanoparticles anchored on the surface of yeast via a hydrothermal processes for environmental applications[J]. RSC Advances, 2014, 4(66): 34864-34872. |
47 | CHANG Y K, LEU M H, CHANG J E, et al. Combined two-stage xanthate processes for the treatment of copper-containing wastewater[J]. Engineering in Life Sciences, 2007, 7(1): 75-80. |
48 | HE J, LU Y C, LUO G S. Ca(Ⅱ) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu(II), Cd(Ⅱ) and Pb(Ⅱ) from aqueous solutions[J]. Chemical Engineering Journal, 2014, 244: 202-208. |
49 | ZHAO F P, REPO E, SONG Y, et al. Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study[J]. Green Chemistry, 2017, 19(20): 4816-4828. |
50 | ODIO O F, LARTUNDO-ROJAS L, PALACIOS E G, et al. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions[J]. Applied Surface Science, 2016, 386: 160-177. |
51 | GEDAM N, NETI N R, KORMUNDA M, et al. Novel lead dioxide-graphite-polymer composite anode for electrochemical chlorine generation[J]. Electrochimica Acta, 2015, 169: 109-116. |
52 | ZINGG D S, HERCULES D M. ChemInform abstract: electron spectroscopy for chemical analysis studies of lead sulfide oxidation[J]. Chemischer Informationsdienst, 1978, 9(50): 1992-1995. |
53 | LIANG X F, XU Y M, SUN G H, et al. Preparation, characterization of thiol-functionalized silica and application for sorption of Pb2+ and Cd2+ [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349(1/2/3): 61-68. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[3] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[4] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[5] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[6] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[7] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[8] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[9] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[10] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[11] | HUANG Qizhong, LIU Bing, MA Hongpeng, LYU Wenjie. Methanol to olefin wastewater treatment based on a novel microchannel separation technology [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 669-676. |
[12] | YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486. |
[13] | WANG Dawei, BI Chunmeng, QIN Yongli, JIANG Yongrong, XIE Huabin, MAO Yukun, MIAO Xueyan. Sulfate-reducing activated sludge for immobilization of cadmium in acid mine drainage by mineralization [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5509-5519. |
[14] | YANG Zhuangzhuang, LIU Yongjun, LIU Xingshe, LIU Zhe, YANG Lu, ZHANG Aining. Coalescence separation of oily sludge and removal effect of organic substances from coal chemical wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 538-545. |
[15] | CHI Weili, YANG Hong. Pilot-scale nitrogen removal and optimization of anammox immobilized fillers in the treatment of rare earth tailings wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 506-516. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |