Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3660-3675.DOI: 10.16085/j.issn.1000-6613.2021-1678
• Materials science and technology • Previous Articles Next Articles
SHENG Lisha1,2,3(), CHEN Zhenqian1,2,3
Received:
2021-08-06
Revised:
2021-10-20
Online:
2022-07-23
Published:
2022-07-25
Contact:
CHEN Zhenqian
通讯作者:
陈振乾
作者简介:
生丽莎(1993—),女,博士研究生,研究方向为可变形多孔介质中的传热传质。E-mail:基金资助:
CLC Number:
SHENG Lisha, CHEN Zhenqian. Design and preparation of porous liquids and their applications in CO2 adsorption[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3660-3675.
生丽莎, 陈振乾. 多孔液体设计制备及性能分析研究进展[J]. 化工进展, 2022, 41(7): 3660-3675.
1 | NIAMH O, NICOLA G, JAMES S L. Porous liquids[J]. Chemistry, 2007, 13(11): 3020-3025. |
2 | 侯林慧, 曾祥平, 张建勇. 液体的多孔性[J]. 化学通报, 2008, 71(7): 518-521. |
HOU Linhui, ZENG Xiangping, ZHANG Jianyong. Porosity in liquids[J]. Chemistry, 2008, 71(7): 518-521. | |
3 | 李彦霖, 段尊斌, 霍添, 等. 多孔液体新型材料研究及应用进展[J]. 化工进展, 2017, 36(4): 1342-1350. |
LI Yanlin, DUAN Zunbin, HUO Tian, et al. Progresses in exploration and application of porous liquid materials[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1342-1350. | |
4 | JAMES S L. The dam bursts for porous liquids[J]. Advanced Materials, 2016, 28(27): 5712-5716. |
5 | BOURLINOS A B, CHOWDHURY S R, JIANG D D, et al. Layered organosilicate nanoparticles with liquidlike behavior[J]. Small, 2005, 1(1): 80-82. |
6 | BOURLINOS A B, CHOWDHURY S RAY, HERRERA R, et al. Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures[J]. Advanced Functional Materials, 2005, 15(8): 1285-1290. |
7 | BOURLINOS A, STASSINOPOULOS A, ANGLOS D, et al. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties[J]. Small, 2006, 2(4): 513-516. |
8 | WANG D C, XIN Y Y, LI X Q, et al. Transforming metal-organic frameworks into porous liquids via a covalent linkage strategy for CO2 capture[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2600-2609. |
9 | WANG D C, NING H L, XIN Y Y, et al. Transforming Ti3C2T x MXenes into nanoscale ionic materials via an electronic interaction strategy[J]. Journal of Materials Chemistry A, 2021, 9(27): 15441-15451. |
10 | 王德超, 辛洋洋, 李晓倩, 等. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021(10): 1874-1886. |
WANG D C, XIN Y Y, LI X Q, et al. Porous liquids and their applications in gas capture and separation[J]. Progress in Chemistry, 2021(10): 1874-1886. | |
11 | WANG D C, XIN Y Y, WANG Y D, et al. A general way to transform Ti3C2T x MXene into solvent-free fluids for filler phase applications[J]. Chemical Engineering Journal, 2021, 409: 128082. |
12 | ATWOOD J L, BARBOUR L J, JERGA A. Storage of methane and Freon by interstitial van der Waals confinement[J]. Science, 2002, 296(5577): 2367-2369. |
13 | CAIRA M R, BOURNE S A, MHLONGO W T, et al. New crystalline forms of permethylated β-cyclodextrin[J]. Chemical Communications, 2004, 10(19): 2216-2217. |
14 | EHLERS J, KÖNIG W A, LUTZ S, et al. Gas chromatographic separation of enantiomeric olefins[J]. Angewandte Chemie International Edition, 1988, 27(11): 1556-1558. |
15 | BOURLINOS A B, SIMOPOULOS A, PETRIDIS D. Synthesis of capped ultrafine γ-Fe2O3 particles from iron(Ⅲ) hydroxide caprylate: a novel starting material for readily attainable organosols[J]. Chemistry of Materials, 2002, 14(2): 899-903. |
16 | BOURLINOS A B, RAMAN K, HERRERA R, et al. A liquid derivative of 12-tungstophosphoric acid with unusually high conductivity[J]. Journal of the American Chemical Society, 2004, 126(47): 15358-15359. |
17 | MAPESA E U, CANTILLO N M, HAMILTON S T, et al. Localized and collective dynamics in liquid-like polyethylenimine-based nanoparticle organic hybrid materials[J]. Macromolecules, 2021, 54(5): 2296-2305. |
18 | DU P X, LIU D, YUAN P, et al. Controlling the macroscopic liquid-like behaviour of halloysite-based solvent-free nanofluids via a facile core pretreatment[J]. Applied Clay Science, 2018, 156: 126-133. |
19 | SCHAEFER J L, MOGANTY S S, ARCHER L A. Nanoscale organic hybrid electrolytes[J]. Advanced Materials, 2010, 22(33):3677-3680. |
20 | YANG R L, FAN W D, ZHENG Y P, et al. Effects of the core of liquid-like SiO2 nanoparticle organic hybrid materials on CO2 capture[J]. Journal of Materials Science, 2018, 53(7): 5172-5182. |
21 | BOURLINOS A B, HERRERA R, CHALKIAS N, et al. Surface-functionalized nanoparticles with liquid-like behavior[J]. Advanced Materials, 2005, 17(2): 234-237. |
22 | PARK Y, SHIN D, JANG Y N, et al. CO2 capture capacity and swelling measurements of liquid-like nanoparticle organic hybrid materials via attenuated total reflectance Fourier transform infrared spectroscopy[J]. Journal of Chemical & Engineering Data, 2012, 57(1): 40-45. |
23 | LIN K Y A, PARK A H A. Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials[J]. Environmental Science & Technology, 2011, 45(15): 6633-6639. |
24 | GIRI N, DAVIDSON C E, MELAUGH G, et al. Alkylated organic cages: from porous crystals to neat liquids[J]. Chemical Science, 2012, 3(6): 2153. |
25 | MELAUGH G, GIRI N, DAVIDSON C E, et al. Designing and understanding permanent microporosity in liquids[J]. Physical Chemistry Chemical Physics, 2014, 16(20): 9422-9431. |
26 | ZHANG J S, CHAI S H, QIAO Z N, et al. Porous liquids: a promising class of media for gas separation[J]. Angewandte Chemie International Edition, 2015, 54(3): 932-936. |
27 | SHI T, ZHENG Y P, WANG T, et al. Effect of pore size on the carbon dioxide adsorption behavior of porous liquids based on hollow silica[J]. ChemPhysChem, 2018, 19(1): 130-137. |
28 | LI P P, SCHOTT J A, ZHANG J S, et al. Electrostatic-assisted liquefaction of porous carbons[J]. Angewandte Chemie International Edition, 2017, 56(47): 14958-14962. |
29 | TANG Z H, ZENG C F, LEI Y D, et al. Fluorescent whitening agent stabilized graphene and its composites with chitosan[J]. Journal of Materials Chemistry, 2011, 21(43): 17111. |
30 | NEEL A J, HILTON M J, SIGMAN M S, et al. Exploiting non-covalent π interactions for catalyst design[J]. Nature, 2017, 543(7647): 637-646. |
31 | 生丽莎, 陈振乾. 静电辅助多孔液体的制备及特性研究[J]. 化工学报, 2019, 70(3): 1163-1170. |
SHENG Lisha, CHEN Zhenqian. Preparation and characterization of electrostatic-assisted porous liquid[J]. CIESC Journal, 2019, 70(3): 1163-1170. | |
32 | KUMAR R, DHASAIYAN P, NAVEENKUMAR P M, et al. A solvent-free porous liquid comprising hollow nanorod-polymer surfactant conjugates[J]. Nanoscale Advances, 2019, 1(10): 4067-4075. |
33 | ZHAO X R, AN S H, DAI J L, et al. Transforming surface-modified metal organic framework powder into room temperature porous liquids via an electrical balance strategy[J]. New Journal of Chemistry, 2020, 44(29): 12715-12722. |
34 | WANG D C, XIN Y Y, LI X Q, et al. A universal approach to turn UiO-66 into type 1 porous liquids via post-synthetic modification with corona-canopy species for CO2 capture[J]. Chemical Engineering Journal, 2021, 416: 127625. |
35 | TOZAWA T, JONES J T A, SWAMY S I, et al. Porous organic cages[J]. Nature Materials, 2009, 8(12): 973-978. |
36 | LYDON D P, CAMPBELL N L, ADAMS D J, et al. Scalable synthesis for porous organic cages[J]. Synthetic Communications, 2011, 41(14): 2146-2151. |
37 | JIANG S, JONES J T A, HASELL T, et al. Porous organic molecular solids by dynamic covalent scrambling[J]. Nature Communications, 2011, 2: 207. |
38 | JONES J T A, HOLDEN D, MITRA T, et al. On-off porosity switching in a molecular organic solid[J]. Angewandte Chemie International Edition, 2011, 123(3): 775-779. |
39 | HERNÁNDEZ-IBÁÑEZ N, LEE J S M, INIESTA J, et al. pH effects on molecular hydrogen storage in porous organic cages deposited onto platinum electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819: 46-50. |
40 | GIRI N, DEL PÓPOLO M G, MELAUGH G, et al. Liquids with permanent porosity[J]. Nature, 2015, 527(7577): 216-220. |
41 | MASTALERZ M. Liquefied molecular holes[J]. Nature, 2015, 527(7577): 174-175. |
42 | KEARSEY R J, ALSTON B M, BRIGGS M E, et al. Accelerated robotic discovery of type Ⅱ porous liquids[J]. Chemical Science, 2019, 10(41): 9454-9465. |
43 | JIE K C, ONISHI N, SCHOTT J A, et al. Transforming porous organic cages into porous ionic liquids via a supramolecular complexation strategy[J]. Angewandte Chemie International Edition, 2020, 59(6): 2268-2272. |
44 | 熊鑫坤, 宋华, 苑彬彬, 等. 多孔液体:合成与应用[J]. 化工进展, 2021, 40(8): 4346-4359. |
XIONG Xinkun, SONG Hua, YUAN Binbin, et al. Porous liquids: synthesis and application[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4346-4359. | |
45 | DENG Z, YING W, GONG K, et al. Facilitate gas transport through metal-organic polyhedra constructed porous liquid membrane[J]. Small, 2020, 16(11): 1907016. |
46 | EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
47 | ZHAO X, WANG Y X, LI D S, et al. Metal-organic frameworks for separation[J]. Advanced Materials, 2018, 30(37): 1705189. |
48 | BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
49 | WANG B, CÔTÉ A P, FURUKAWA H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 2008, 453(7192): 207-211. |
50 | BANERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society, 2009, 131(11): 3875-3877. |
51 | MCKEOWN N B. Polymers of intrinsic microporosity (PIMs)[J]. Polymer, 2020, 202: 122736. |
52 | DING S Y, WANG W. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
53 | LIU H, LIU B, LIN L C, et al. A hybrid absorption-adsorption method to efficiently capture carbon[J]. Nature Communications, 2014, 5: 5147. |
54 | LIU H, GUO P, REGUEIRA T, et al. Irreversible change of the pore structure of ZIF-8 in carbon dioxide capture with water coexistence[J]. The Journal of Physical Chemistry C, 2016, 120(24): 13287-13294. |
55 | SHAN W, FULVIO P F, KONG L, et al. New class of type Ⅲ porous liquids: a promising platform for rational adjustment of gas sorption behavior[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 32-36. |
56 | LIU S, LIU J, HOU X, et al. Porous liquid: a stable ZIF-8 colloid in ionic liquid with permanent porosity[J]. Langmuir, 2018, 34(12): 3654-3660. |
57 | LI P P, CHEN H, SCHOTT J A, et al. Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids[J]. Nanoscale, 2019, 11(4): 1515-1519. |
58 | ZHAO X M, YUAN Y H, LI P P, et al. A polyether amine modified metal organic framework enhanced the CO2 adsorption capacity of room temperature porous liquids[J]. Chemical Communications, 2019, 55(87): 13179-13182. |
59 | CAHIR J, TSANG M Y, LAI B B, et al. Type 3 porous liquids based on non-ionic liquid phases-broad and tailorable platform of selective, fluid gas sorbents[J]. Chemical Science, 2020, 11(8): 2077-2084. |
60 | HE S F, CHEN L H, CUI J, et al. General way to construct micro-and mesoporous metal-organic framework-based porous liquids[J]. Journal of the American Chemical Society, 2019, 141(50): 19708-19714. |
61 | MISSANA T, ADELL A. On the applicability of DLVO theory to the prediction of clay colloids stability[J]. Journal of Colloid and Interface Science, 2000, 230(1): 150-156. |
62 | POPA I, GILLIES G, PAPASTAVROU G, et al. Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes[J]. The Journal of Physical Chemistry B, 2010, 114(9): 3170-3177. |
63 | 白明洁, 刘金龙, 齐志娜, 等. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59. |
BAI Mingjie, LIU Jinlong, QI Zhina, et al. Research progress in nanofluids with graphene addition[J]. Journal of Materials Engineering, 2020, 48(4): 46-59. | |
64 | 胡纪华, 杨兆禧, 郑忠, 等. 胶体与界面化学[M]. 广州: 华南理工大学出版社, 2002. |
HU Jihua, YANG Zhaoxi, ZHENG Zhong, et al. Colloid and interface chemistry[M]. Guangzhou: South China University of Technology Press, 2002. | |
65 | TIARA A M, CHAKRABORTY S, SARKAR I, et al. Synthesis and characterization of Zn-Al layered double hydroxide nanofluid and its application as a coolant in metal quenching[J]. Applied Clay Science, 2017, 143: 241-249. |
66 | SHIRANI M, AKBARI-ADERGANI B, JAZI M B, et al. Green ultrasound assisted magnetic nanofluid-based liquid phase microextraction coupled with gas chromatography-mass spectrometry for determination of permethrin, deltamethrin, and cypermethrin residues[J]. Microchimica Acta, 2019, 186(10): 1-11. |
67 | YIN Q G, LI C H, ZHANG Y B, et al. Spectral analysis and power spectral density evaluation in Al2O3 nanofluid minimum quantity lubrication milling of 45 steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1/2/3/4): 129-145. |
68 | AKOH H, TSUKASAKI Y, YATSUYA S, et al. Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate[J]. Journal of Crystal Growth, 1978, 45: 495-500. |
69 | APARNA Z, MICHAEL M, PABI S K, et al. Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: an experimental investigation and development of new correlation function[J]. Powder Technology, 2019, 343: 714-722. |
70 | AGNIHOTRI P, LAD V N. Magnetic nanofluid: synthesis and characterization[J]. Chemical Papers, 2020, 74(9): 3089-3100. |
71 | JABBARI F, RAJABPOUR A, SAEDODIN S. Thermal conductivity and viscosity of nanofluids: a review of recent molecular dynamics studies[J]. Chemical Engineering Science, 2017, 174: 67-81. |
72 | LU J, LIU D M, YANG X N, et al. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation[J]. Applied Surface Science, 2015, 357: 1114-1121. |
73 | 李旭. APTS表面接枝纳米SiO2改性MPIA绝缘纸热稳定性的机理研究[D]. 重庆: 西南大学, 2018. |
LI Xu. The thermal stability improvement mechanism of MPIA insulating paper modified by nano-SiO2 surface-grafted via APTS[D]. Chongqing: Southwest University, 2018. | |
74 | 生丽莎, 陈振乾. 纳米流体中纳米颗粒分散性能的分子动力学模拟[J]. 东南大学学报(自然科学版), 2021, 51(4): 700-706. |
SHENG Lisha, CHEN Zhenqian. Molecular dynamics simulation of dispersion property of nanoparticles in nanofluids[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 700-706. | |
75 | SZEJTLI J. Introduction and general overview of cyclodextrin chemistry[J]. Chemical Reviews, 1998, 98(5): 1743-1754. |
76 | SHENG L S, CHEN Z Q, WANG Y. Molecular dynamics simulations of stability and fluidity of porous liquids[J]. Applied Surface Science, 2021, 536: 147951. |
77 | SHENG L S, CHEN Z Q. Molecular dynamics study of dispersion and fluidity of porous liquids with different pore sizes[J]. Journal of Molecular Liquids, 2021, 333: 115890. |
78 | SHENG L S, CHEN Z Q, XU B, et al. Molecular dynamics study of the dispersion stability and fluidity of porous liquids with different canopy structures[J]. The Journal of Physical Chemistry B, 2021, 125(20): 5387-5396. |
79 | EASTMAN J A, PHILLPOT S R, CHOI S U S, et al. Thermal transport in nanofluids[J]. Annual Review of Materials Research, 2004, 34(1): 219-246. |
80 | LIN K Y. Design, synthesis and evaluation of liquid-like nanoparticle organic hybrid materials (NOHMs) for carbon dioxide capture[D]. New York: Columbia University, 2012. |
81 | 王宝和, 程飞, 白麟, 等. 水基纳米流体传递性质的分子动力学模拟研究[J]. 河南化工, 2019, 36(3): 18-22. |
WANG Baohe, CHENG Fei, BAI Lin, et al. Molecular dynamics simulation research of transport properties of water-based nanofluids[J]. Henan Chemical Industry, 2019, 36(3): 18-22. | |
82 | BAO L L, ZHONG C Y, JIE P F, et al. The effect of nanoparticle size and nanoparticle aggregation on the flow characteristics of nanofluids by molecular dynamics simulation[J]. Advances in Mechanical Engineering, 2019, 11(11): 168781401988948. |
83 | LI X Q, WANG D C, HE Z J, et al. Zeolitic imidazolate frameworks-based porous liquids with low viscosity for CO2 and toluene uptakes[J]. Chemical Engineering Journal, 2021, 417: 129239. |
84 | 周玉梅, 周宝晶, 聂雪玫, 等. MD/QM/CSM方法计算β-环糊精及其衍生物对二甲四氯的包合机理[J]. 化工进展, 2015, 34(12): 4185-4190. |
ZHOU Yumei, ZHOU Baojing, NIE Xuemei, et al. A theoretical study on the microencapsulation of herbicide MCPA with native β-cyclodextrin and its derivatives by a molecular dynamics/quantum mechanics/continuum solvent model approach[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4185-4190. | |
85 | ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
86 | ZHANG W, XIONG R G. Ferroelectric metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 1163-1195. |
87 | XUAN W M, ZHU C F, LIU Y, et al. Mesoporous metal-organic framework materials[J]. Chemical Society Reviews, 2012, 41(5): 1677-1695. |
88 | XIANG Z H, CAO D P. Porous covalent-organic materials: synthesis, clean energy application and design[J]. Journal of Materials Chemistry A, 2013, 1(8): 2691-2718. |
89 | FENG X, DING X S, JIANG D L. Covalent organic frameworks[J]. Chemical Society Reviews, 2012, 41(18): 6010. |
90 | HUANG Y, KE S H. Hydrogen storage in metal-organic frameworks[J]. Applied Mechanics and Materials, 2013, 316/317: 946-949. |
91 | SAMANTA A, ZHAO A, SHIMIZU G K H, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438-1463. |
92 | BEN T, REN H, MA S Q, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 121(50): 9621-9624. |
93 | BEN T, PEI C Y, ZHANG D L, et al. Gas storage in porous aromatic frameworks (PAFs)[J]. Energy & Environmental Science, 2011, 4(10): 3991. |
94 | LAN J H, CAO D P, WANG W C, et al. High-capacity hydrogen storage in porous aromatic frameworks with diamond-like structure[J]. The Journal of Physical Chemistry Letters, 2010, 1(6): 978-981. |
95 | FAVRE E, SVENDSEN H F. Membrane contactors for intensified post-combustion carbon dioxide capture by gas-liquid absorption processes[J]. Journal of Membrane Science, 2012, 407/408: 1-7. |
96 | ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
97 | HUTTENHUIS P J G, AGRAWAL N J, SOLBRAA E, et al. The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions[J]. Fluid Phase Equilibria, 2008, 264(1/2): 99-112. |
98 | 黄宽. 基于离子液体或多孔碳的酸性气体捕集介质的设计、合成及性能研究[D]. 南京: 南京大学, 2015. |
HUANG Kuan. Design, synthesis and performance of ionic liquids or porous carbons-based absorbents/adsorbents for acidic gas capture[D]. Nanjing: Nanjing University, 2015. | |
99 | IM J, HONG S Y, CHEON Y, et al. Steric hindrance-induced zwitterionic carbonates from alkanolamines and CO2: highly efficient CO2 absorbents[J]. Energy & Environmental Science, 2011, 4(10): 4284-4289. |
100 | BARZAGLI F, LAI S, MANI F. A new class of single-component absorbents for reversible carbon dioxide capture under mild conditions[J]. ChemSusChem, 2015, 8(1): 184-191. |
101 | PETIT C, PARK Y, LIN K Y A, et al. Spectroscopic investigation of the canopy configurations in nanoparticle organic hybrid materials of various grafting densities during CO2 capture[J]. The Journal of Physical Chemistry C, 2012, 116(1): 516-525. |
102 | PARK Y, DECATUR J, LIN K Y A, et al. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization[J]. Physical Chemistry Chemical Physics, 2011, 13(40): 18115-18122. |
103 | LIN K Y A, PETIT C, PARK A H A. Effect of SO2 on CO2 capture using liquid-like nanoparticle organic hybrid materials[J]. Energy & Fuels, 2013, 27(8): 4167-4174. |
104 | PARK Y, PETIT C, HAN P, et al. Effect of canopy structures and their steric interactions on CO2 sorption behavior of liquid-like nanoparticle organic hybrid materials[J]. RSC Advances, 2014, 4(17): 8723. |
105 | EGLESTON B D, LUZYANIN K V, BRAND M C, et al. Controlling gas selectivity in molecular porous liquids by tuning the cage window size[J]. Angewandte Chemie International Edition, 2020, 59(19): 7362-7366. |
106 | ATILHAN M, CINCOTTI A, APARICIO S. Nanoscopic characterization of type Ⅱ porous liquid and its use for CO2 absorption from molecular simulation[J]. Journal of Molecular Liquids, 2021, 330: 115660. |
107 | ZHANG F, YANG F, HUANG J, et al. Thermodynamics and kinetics of gas storage in porous liquids[J]. The Journal of Physical Chemistry B, 2016, 120(29): 7195-7200. |
108 | GREENAWAY R L, HOLDEN D, EDEN E G B, et al. Understanding gas capacity, guest selectivity, and diffusion in porous liquids[J]. Chemical Science, 2017, 8(4): 2640-2651. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[9] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[10] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[11] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 679
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 458
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |