Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 400-417.DOI: 10.16085/j.issn.1000-6613.2021-0295
• Resources and environmental engineering • Previous Articles Next Articles
PAN Rouxing1(), YU Qingjun1,2, TANG Xiaolong1,2(), YI Honghong1,2, GAO Fengyu1,2, ZHAO Shunzheng1,2, ZHOU Yuansong1,2, LIU Yuanyuan1
Received:
2021-02-07
Revised:
2020-05-18
Online:
2022-01-24
Published:
2022-01-05
Contact:
TANG Xiaolong
潘柔杏1(), 于庆君1,2, 唐晓龙1,2(), 易红宏1,2, 高凤雨1,2, 赵顺征1,2, 周远松1,2, 刘媛媛1
通讯作者:
唐晓龙
作者简介:
潘柔杏(1996—),女,硕士研究生,研究方向为大气污染控制。E-mail:基金资助:
CLC Number:
PAN Rouxing, YU Qingjun, TANG Xiaolong, YI Honghong, GAO Fengyu, ZHAO Shunzheng, ZHOU Yuansong, LIU Yuanyuan. Research progress of passive NOx adsorbent in diesel vehicle for cold start emission control[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 400-417.
潘柔杏, 于庆君, 唐晓龙, 易红宏, 高凤雨, 赵顺征, 周远松, 刘媛媛. 被动NOx吸附剂在柴油车冷启动排放控制中的研究进展[J]. 化工进展, 2022, 41(1): 400-417.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0295
载体 | 金属 | 负载量(质量分数)/% | 存储温度/℃ | 存储性能(NSE值或NOx/Pd) | 释放性能(NDE值或温度范围) | 参考文献 |
---|---|---|---|---|---|---|
CeO2 | Pt | 1~2 | 80~120 | NSE约40% | <350℃,NDE约20% 350~500℃ | [ |
Pd | 1~2 | 80~120 | NSE 25%~50% | <350℃,NDE约40% 180~500℃ | [ | |
Pd-Pt | 1-1 | 80 | — | 280~500℃ | [ | |
Al2O3 | Pt | 0.43g/L 2 | 80~200 | NSE约37% | 380~500℃ | [ |
Pd | 0.43g/L 2 | 80~200 | NSE约14% | 150~350℃ | [ | |
Pt-La | 1-1 | 80~160 | NSE 60%~90% | 250~500℃,NDE约60% | [ | |
Pd-Pt | 1-1 | 80 | — | 150~500℃ | [ | |
Ag | 1.3 | 120 | NSE约50% | 250~470℃ | [ | |
ZrO2 | Pd | 1 | 120 | NSE约33% | <350℃,NDE约70% | [ |
— | — | — | NSE约10.5% | <350℃,释放量与吸附量相当 | [ | |
CeO2-Pr2O3 | Pt | 1 | 120 | NSE约68% | <350℃,NDE约40% | [ |
Pd | 1 | 120 | NSE约50% | <350℃,NDE约41% | [ | |
CeO2-ZrO2 | Pt | 1 | 120 | NSE约70% | <350℃,NDE约60% | [ |
Pd | 1~2 | 80~120 | NSE约20% | <350℃,NDE约80% 250~500℃ | [ | |
Pt-Pd | 0.5-0.5 | 120 | NSE约50% | <350℃,NDE约70% | [ | |
CeO2-Al2O3 | Pt | 2.3 | 80 | NSE约10% | 300~400℃ | [ |
Pd | 2.3 | 80 | NSE约5% | 100~200℃ | [ | |
WO3-ZrO2 | Pd | 1 | 120 | NSE约80% | <350℃,NDE约100% | [ |
— | — | — | NSE约0 | <350℃,释放量与吸附量相当 | [ | |
SSZ-13 | Pd | 1~2 | 80~120 | NSE约90% NOx/Pd 0.41 | 250~450℃ | [ |
Co | — | 100 | NSE约96% | 250~400℃ | [ | |
Beta | Pd | 1 | 100 | NSE约90% | 200~450℃ | [ |
CaO | 10 | 40 | NOx穿透时间102min | 500~550℃ | [ | |
ZSM-5 | Pd | 0~2 | 50~150 | NSE约90% NOx/Pd 0.3~0.83 | 200~450℃ | [ |
LTA | Pd | 1.4 | 80 | NOx/Pd 0.52 | 300~400℃ | [ |
SSZ-39 | Pd | 0.7 | 100 | NSE约90% | 230~350℃ | [ |
FER | Pd | 1.8 | 100 | NOx/Pd 0.9 | 200~300℃ | [ |
MCM-22 | Pd | 1.22 | 100 | NOx/Pd 0.55 | 180~300℃ | [ |
载体 | 金属 | 负载量(质量分数)/% | 存储温度/℃ | 存储性能(NSE值或NOx/Pd) | 释放性能(NDE值或温度范围) | 参考文献 |
---|---|---|---|---|---|---|
CeO2 | Pt | 1~2 | 80~120 | NSE约40% | <350℃,NDE约20% 350~500℃ | [ |
Pd | 1~2 | 80~120 | NSE 25%~50% | <350℃,NDE约40% 180~500℃ | [ | |
Pd-Pt | 1-1 | 80 | — | 280~500℃ | [ | |
Al2O3 | Pt | 0.43g/L 2 | 80~200 | NSE约37% | 380~500℃ | [ |
Pd | 0.43g/L 2 | 80~200 | NSE约14% | 150~350℃ | [ | |
Pt-La | 1-1 | 80~160 | NSE 60%~90% | 250~500℃,NDE约60% | [ | |
Pd-Pt | 1-1 | 80 | — | 150~500℃ | [ | |
Ag | 1.3 | 120 | NSE约50% | 250~470℃ | [ | |
ZrO2 | Pd | 1 | 120 | NSE约33% | <350℃,NDE约70% | [ |
— | — | — | NSE约10.5% | <350℃,释放量与吸附量相当 | [ | |
CeO2-Pr2O3 | Pt | 1 | 120 | NSE约68% | <350℃,NDE约40% | [ |
Pd | 1 | 120 | NSE约50% | <350℃,NDE约41% | [ | |
CeO2-ZrO2 | Pt | 1 | 120 | NSE约70% | <350℃,NDE约60% | [ |
Pd | 1~2 | 80~120 | NSE约20% | <350℃,NDE约80% 250~500℃ | [ | |
Pt-Pd | 0.5-0.5 | 120 | NSE约50% | <350℃,NDE约70% | [ | |
CeO2-Al2O3 | Pt | 2.3 | 80 | NSE约10% | 300~400℃ | [ |
Pd | 2.3 | 80 | NSE约5% | 100~200℃ | [ | |
WO3-ZrO2 | Pd | 1 | 120 | NSE约80% | <350℃,NDE约100% | [ |
— | — | — | NSE约0 | <350℃,释放量与吸附量相当 | [ | |
SSZ-13 | Pd | 1~2 | 80~120 | NSE约90% NOx/Pd 0.41 | 250~450℃ | [ |
Co | — | 100 | NSE约96% | 250~400℃ | [ | |
Beta | Pd | 1 | 100 | NSE约90% | 200~450℃ | [ |
CaO | 10 | 40 | NOx穿透时间102min | 500~550℃ | [ | |
ZSM-5 | Pd | 0~2 | 50~150 | NSE约90% NOx/Pd 0.3~0.83 | 200~450℃ | [ |
LTA | Pd | 1.4 | 80 | NOx/Pd 0.52 | 300~400℃ | [ |
SSZ-39 | Pd | 0.7 | 100 | NSE约90% | 230~350℃ | [ |
FER | Pd | 1.8 | 100 | NOx/Pd 0.9 | 200~300℃ | [ |
MCM-22 | Pd | 1.22 | 100 | NOx/Pd 0.55 | 180~300℃ | [ |
1 | LEE Jungkuk, THEIS Joseph R, KYRIAKIDOU Eleni A. Vehicle emissions trapping materials: successes, challenges, and the path forward[J]. Applied Catalysis B: Environmental, 2019, 243: 397-414. |
2 | AYODHYA Archit Srinivasacharya, NARAYANAPPA Kumar Gottekere. An overview of after-treatment systems for diesel engines[J]. Environmental Science and Pollution Research, 2018, 25(35): 35034-35047. |
3 | REŞITOĞLU İ A, ALTINIŞIK K, KESKIN A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems[J]. Clean Technologies and Environmental Policy, 2015, 17(1): 15-27. |
4 | HAN Lupeng, CAI Sixiang, GAO Min, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
5 | JANGJOU Yasser, Quan DO, GU Yuntao, et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catalysis, 2018, 8: 1325-1337. |
6 | WANG Di, JANGJOU Yasser, LIU Yong, et al. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B: Environmental, 2015, 165: 438-445. |
7 | FICKEL Dustin W, Elizabeth D’ADDIO, LAUTERBACH Jochen A, et al. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Applied Catalysis B: Environmental, 2011, 102(3/4): 441-448. |
8 | CHEN Haiying, COLLIER Jillian E, LIU Dongxia, et al. Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control[J]. Catalysis Letters, 2016, 146(9): 1706-1711. |
9 | MISRA Chandan, RUEHL Chris, COLLINS John, et al. In-use NOx emissions from diesel and liquefied natural gas refuse trucks equipped with SCR and TWC, respectively[J]. Environmental Science & Technology, 2017, 51(12): 6981-6989. |
10 | WANG Yujie, YONG Xin, RONG Mingyue, et al. Recent advances in catalytic automotive emission control: passive NO storage at low temperatures[J]. Journal of the Chinese Chemical Society, 2020, 67(9): 1530-1543. |
11 | 汪晓伟, 李腾腾, 景晓军, 等. 轻型车实际行驶污染物排放特性试验研究[J]. 小型内燃机与车辆技术, 2018, 47(6): 46-50. |
WANG Xiaowei, LI Tengteng, JING Xiaojun, et al. Experimental study on real driving emissions characteristics of light duty vehicles[J]. Small Internal Combustion Engine and Vehicle Technique, 2018, 47(6): 46-50. | |
12 | WESTERMANN A, AZAMBRE B. Impact of the zeolite structure and acidity on the adsorption of unburnt hydrocarbons relevant to cold start conditions[J]. The Journal of Physical Chemistry C, 2016, 120(45): 25903-25914. |
13 | FREY H C. Trends in onroad transportation energy and emissions[J]. Journal of the Air & Waste Management Association, 2018, 68(6): 514-563. |
14 | COLE J. System for reducing NOx from mobile source engine exhaust: US5656244A[P]. 1997-08-12. |
15 | JARVIS Mottlene, ADAMS Karen Marie. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent: US6182443 B1[P]. 2001-02-06. |
16 | HENRY Cary, GUPTA Aniket, CURRIER Neal, et al. Advanced technology light duty diesel aftertreatment system[J]. City, 2012, 15(570): 21-28. |
17 | CHEN Haiying, MULLA Shadab, WEIGERT Erich, et al. Cold start concept (CSC™): a novel catalyst for cold start emission control[J]. SAE International Journal of Fuels and Lubricants, 2013, 6(2): 372-381. |
18 | MELVILLE Joanne Elizabeth, BRISLEY Robert James, KEANE Orla, et al. Thermally regenerable nitric oxide adsorbent: US8105559[P]. 2012-01-31. |
19 | CHEN Haiying, LIU Donna, WEIGERT Erich, et al. Durability assessment of diesel cold start concept (dCSC™) technologies[J]. SAE International Journal of Engines, 2017, 10(4): 1713-1721. |
20 | GU Yuntao, EPLING William S. Passive NOx adsorber: an overview of catalyst performance and reaction chemistry[J]. Applied Catalysis A: General, 2019, 570(25): 1-14. |
21 | MOLINER M, CORMA A. From metal-supported oxides to well-defined metal site zeolites: the next generation of passive NOx adsorbers for low-temperature control of emissions from diesel engines[J]. Reaction Chemistry & Engineering, 2019, 4(2): 223-234. |
22 | FILTSCHEW Anastasia, HESS Christian. Unravelling the mechanism of NO and NO2 storage in ceria: the role of defects and Ce-O surface sites[J]. Applied Catalysis B: Environmental, 2018, 237: 1066-1081. |
23 | LEE Kyung Ju, KUMAR Pullur Anil, MAQBOOL Muhammad Salman, et al. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: physico-chemical properties and catalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142/143: 705-717. |
24 | Zafer SAY, VOVK Evgeny I, BUKHTIYAROV Valerii I, et al. Influence of ceria on the NOx reduction performance of NOx storage reduction catalysts[J]. Applied Catalysis B: Environmental, 2013, 142/143: 89-100. |
25 | JONES Samantha, JI Yaying, CROCKER Mark. Ceria-based catalysts for low temperature NOx storage and release[J]. Catalysis Letters, 2016, 146(5): 909-917. |
26 | RYOU Youngseok, LEE Jaeha, LEE Hyokyoung, et al. Low temperature NO adsorption over hydrothermally aged Pd/CeO2 for cold start application[J]. Catalysis Today, 2018, 307(1): 93-101. |
27 | RYOU Youngseok, LEE Jaeha, LEE Hyokyoung, et al. Effect of sulfur aging and regeneration on low temperature NO adsorption over hydrothermally treated Pd/CeO2 and Pd/Ce0.58Zr0.42O2 catalysts[J]. Catalysis Today, 2017, 297(15): 53-59. |
28 | KIM Yongwoo, HWANG Sungha, LEE Jaeha, et al. Comparison of NOx adsorption/desorption behaviors over Pd/CeO2 and Pd/SSZ-13 as passive NOx adsorbers for cold start application[J]. Emission Control Science and Technology, 2019, 5(2): 172-182. |
29 | JING Yuan, CAI Zhengxu, LIU Chong, et al. Promotional effect of La in the three-way catalysis of La-loaded Al2O3-supported Pd catalysts (Pd/La/Al2O3)[J]. ACS Catalysis, 2020, 10(2): 1010-1023. |
30 | MOZAFFARI Nastaran, SOLAYMANI Shahram, ACHOUR Amine, et al. New Insights into SnO2/Al2O3, Ni/Al2O3, and SnO2/Ni/Al2O3 composite films for CO adsorption: building a bridge between microstructures and adsorption properties[J]. The Journal of Physical Chemistry C, 2020, 124(6): 3692-3701. |
31 | JI Yaying, BAI Shuli, CROCKER Mark. Al2O3-based passive NOx adsorbers for low temperature applications[J]. Applied Catalysis B: Environmental, 2015, 170/171: 283-292. |
32 | LUO Jinyong, GAO Feng, KARIM Ayman M, et al. Advantages of MgAlOx over γ-Al2O3 as a support material for potassium-based high-temperature lean NOx traps[J]. ACS Catalysis, 2015, 5(8): 4680-4689. |
33 | THEIS Joseph R, LAMBERT Christine K. An assessment of low temperature NOx adsorbers for cold-start NOx control on diesel engines[J]. Catalysis Today, 2015, 258: 367-377. |
34 | REN Shouxian, SCHMIEG Steven J, KOCH Calvin K, et al. Investigation of Ag-based low temperature NO adsorbers[J]. Catalysis Today, 2015, 258: 378-385. |
35 | JONES Samantha, JI Yaying, Agustín BUENO-LOPEZ, et al. CeO2-M2O3 passive NOx adsorbers for cold start applications[J]. Emission Control Science and Technology, 2017, 3(1): 59-72. |
36 | BOUTIKOS Panagiotis, Adrián ŽÁK, Petr KOĆÍ. CO and hydrocarbon light-off inhibition by pre-adsorbed NOx on Pt/CeO2/Al2O3 and Pd/CeO2/Al2O3 diesel oxidation catalysts[J]. Chemical Engineering Science, 2019, 209: 115201. |
37 | THEIS Joseph R. An assessment of Pt and Pd model catalysts for low temperature NO adsorption[J]. Catalysis Today, 2016, 267: 93-109. |
38 | THEIS Joseph R, LAMBERT Christine K. Mechanistic assessment of low temperature NOx adsorbers for cold start NOx control on diesel engines[J]. Catalysis Today, 2019, 320: 181-195. |
39 | JI Yaying, XU Dongyan, BAI Shuli, et al. Pt- and Pd-promoted CeO2-ZrO2 for passive NOx adsorber applications[J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 111-125. |
40 | KVASNICKOVA Anežka, KOCI Petr, JI Yaying, et al. Effective model of NOx adsorption and desorption on PtPd/CeO2-ZrO2 passive NOx adsorber[J]. Catalysis Letters, 2020, 150(11): 3223-3233. |
41 | LI Hang, SHEN Meiqing, WANG Jianqiang, et al. Effect of support on CO oxidation performance over the Pd/CeO2 and Pd/CeO2-ZrO2 catalyst[J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 1477-1486. |
42 | THEIS Joseph R, LAMBERT Christine. The effects of CO, C2H4, and H2O on the NOx storage performance of low temperature NOx adsorbers for diesel applications[J]. SAE International Journal of Engines, 2017, 10(4): 1627-1637. |
43 | JI Yaying, BAI Shuli, XU Dongyan, et al. Pd-promoted WO3-ZrO2 for low temperature NOx storage[J]. Applied Catalysis B: Environmental, 2020, 264(5): 118499. |
44 | PORTA Alessandro, PELLEGRINELLI Tommaso, CASTOLDI Lidia, et al. Low temperature NOx adsorption study on Pd-promoted zeolites[J]. Topics in Catalysis, 2018, 61(18/19): 2021-2034. |
45 | MODEN Bjorn, DONOHUE James M, CORMIER William E, et al. The uses and challenges of zeolites in automotive applications[J]. Topics in Catalysis, 2010, 53(19/20): 1367-1373. |
46 | COLLIER Jillian Elaine, YANG Sanyuan. Passive NOx adsorber: US2017/0001169 A1[P]. 2017-01-05. |
47 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOVARIK Libor, et al. The superior hydrothermal stability of Pd/SSZ-39 in low temperature passive NOx adsorption (PNA) and methane combustion[J]. Applied Catalysis B: Environmental, 2021, 280: 119449. |
48 | WANG Aiyong, LINDGREN Kristina, DI Mengqiao, et al. Insight into hydrothermal aging effect on Pd sites over Pd/LTA and Pd/SSZ-13 as PNA and CO oxidation monolith catalysts[J]. Applied Catalysis B: Environmental, 2020, 278: 119315. |
49 | CHANG Xiaofei, LU Guanzhong, GUO Yun, et al. A high effective adsorbent of NOx: preparation, characterization and performance of Ca-beta zeolites[J]. Microporous and Mesoporous Materials, 2013, 165: 113-120. |
50 | JIANG Qiuren, WANG Chen, SHEN Meiqing, et al. The first non-precious metal passive NOx adsorber for cold-start applications[J]. Catalysis Communications, 2019, 125: 103-107. |
51 | RYOU Youngseok, LEE Jaeha, CHO Sung June, et al. Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application[J]. Applied Catalysis B: Environmental, 2017, 212: 140-149. |
52 | LEE Jaeha, RYOU Youngseok, HWANG Sungha, et al. Comparative study of the mobility of Pd species in SSZ-13 and ZSM-5, and its implication for their activity as passive NOx adsorbers (PNAs) after hydro-thermal aging[J]. Catalysis Science & Technology, 2019, 9(1): 163-173. |
53 | ZHENG Yang, KOVARIK Libor, ENGELHARD Mark H, et al. Low-temperature Pd/Zeolite passive NOx adsorbers: structure, performance, and adsorption chemistry[J]. The Journal of Physical Chemistry C, 2017, 121(29): 15793-15803. |
54 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOVARIK Libor, et al. Palladium/Beta zeolite passive NOx adsorbers (PNA): clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance[J]. Applied Catalysis A: General, 2019, 569: 141-148. |
55 | BELLO Estefanía, MARGARIT Vicente J, GALLEGO Eva M, et al. Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications[J]. Microporous and Mesoporous Materials, 2020, 302(1): 110222. |
56 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOVARIK Libor, et al. Achieving atomic dispersion of highly loaded transition metals in small-pore zeolite SSZ-13: high-capacity and high-efficiency low-temperature CO and passive NOx adsorbers[J]. Angewandte Chemie International Edition, 2018, 57(51): 16672-16677. |
57 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOVARIK Libor, et al. Palladium/zeolite low temperature passive NOx adsorbers (PNA): structure-adsorption property relationships for hydrothermally aged PNA materials[J]. Emission Control Science and Technology, 2020, 6(2): 126-138. |
58 | SHAN Yulong, SUN Yu, LI Yaobin, et al. Passive NO adsorption on hydrothermally aged Pd-based small-pore zeolites[J]. Topics in Catalysis, 2020, 63(9/10): 944-953. |
59 | KHIVANTSEV Konstantin, WEI Xinyi, KOVARIK Libor, et al. Pd/FER vs. Pd/SSZ-13 passive NOx adsorbers: adsorbate-controlled location of atomically dispersed Pd(Ⅱ) in FER determines high activity and stability[J]. Angewandte Chemie International Edition, DOI: 10.1002/anie.202107554. |
60 | AMBAST Mugdha, KARINSHAK Kyle, RAHMAN Bhuiyan Md Mushfikur, et al. Passive NOx adsorption on Pd/H-ZSM-5: experiments and modeling[J]. Applied Catalysis B: Environmental, 2020, 269: 118802. |
61 | ZHANG Beibei, SHEN Meiqing, WANG Jianqiang, et al. Investigation of various Pd species in Pd/BEA for cold start application[J]. Catalysts, 2019, 9(3): 247. |
62 | YU Qingjun, CHEN Xiaoyin, BHAT Adarsh, et al. Activation of passive NOx adsorbers by pretreatment with reaction gas mixture[J]. Chemical Engineering Journal, 2020, 399: 125727. |
63 | 杜延年, 周祥, 周涵, 等. FAU分子筛骨架中Al原子的分布规律及对Brønsted酸强度的影响[J]. 石油学报(石油加工), 2019, 35(1): 11-19. |
DU Yannian, ZHOU Xiang, ZHOU Han, et al. Distribution of aluminum atoms in FAU structured framework and their influence on Brønsted acid strength[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(1): 11-19. | |
64 | ADELMAN B J, SACHTLER W M H. The effect of zeolitic protons on NOx reduction over Pd/ZSM-5 catalysts[J]. Applied Catalysis B: Environmental, 1997, 14(1/2): 1-11. |
65 | MIHAI Oana, Lidija TRANDAFILOVIĆ, WENTWORTH Travis, et al. The effect of Si/Al ratio for Pd/BEA and Pd/SSZ-13 used as passive NOx adsorbers[J]. Topics in Catalysis, 2018, 61(18/19): 2007-2020. |
66 | RYOU Youngseok, LEE Jaeha, LEE Hyokyoung, et al. Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber[J]. Catalysis Today, 2019, 320: 175-180. |
67 | 王宁. 高分散金属分子筛的制备及其加氢催化性能研究[D]. 北京: 北京化工大学, 2018. |
WANG Ning. Preparation and catalytic performance of highly dispersed metal molecular sieves[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
68 | IWASAKI Masaoki, SHINJOH Hirofumi. Hydrothermal stability enhancement by sequential ion-exchange of rare earth metals on Fe/BEA zeolites used as NO reduction catalysts[J]. Chemical Communications, 2011, 47(13): 3966-3968. |
69 | LEE Jaeha, KIM Yongwoo, HWANG Sungha, et al. Deactivation of Pd/Zeolites passive NOx adsorber induced by NO and H2O: comparative study of Pd/ZSM-5 and Pd/SSZ-13[J]. Catalysis Today, 2021, 360: 350-355. |
70 | GU Yuntao, ZELINSKY Ryan P, CHEN Yuren, et al. Investigation of an irreversible NOx storage degradation mode on a Pd/BEA passive NOx adsorber[J]. Applied Catalysis B: Environmental, 2019, 258(5): 118032. |
71 | RYOU Youngseok, LEE Jaeha, KIM Yongwoo, et al. Effect of reduction treatments (H2vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application[J]. Applied Catalysis A: General, 2019, 569: 28-34. |
72 | ILMASANI Rojin Feizie, Jungwon WOO, CREASER Derek, et al. Influencing the NOx stability by metal oxide addition to Pd/BEA for passive NOx adsorbers[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 9830-9840. |
73 | LEE Jaeha, RYOU Youngseok, CHO Sung June, et al. Investigation of the active sites and optimum Pd/Al of Pd/ZSM-5 passive NO adsorbers for the cold-start application: evidence of isolated-Pd species obtained after a high-temperature thermal treatment[J]. Applied Catalysis B: Environmental, 2018, 226: 71-82. |
74 | LEE Jaeha, KIM Jonghyun, KIM Yongwoo, et al. Improving NOx storage and CO oxidation abilities of Pd/SSZ-13 by increasing its hydrophobicity[J]. Applied Catalysis B: Environmental, 2020, 277: 119190. |
75 | Anh VU, LUO Jinyong, LI Junhui, et al. Effects of CO on Pd/BEA passive NOx adsorbers[J]. Catalysis Letters, 2017, 147(3): 745-750. |
76 | KHIVANTSEV Konstantin, GAO Feng, KOVARIK Libor, et al. Molecular level understanding of how oxygen and carbon monoxide improve NOx storage in Palladium/SSZ-13 passive NOx adsorbers: the role of NO+ and Pd(Ⅱ)(CO)(NO) species[J]. The Journal of Physical Chemistry C, 2018, 122(20): 10820-10827. |
77 | GUPTA Abhay, KANG Sung Bong, HAROLD Michael P. NOx uptake and release on Pd/SSZ-13: impact of feed composition and temperature[J]. Catalysis Today, 2021, 360(15): 411-425. |
78 | MEI Donghai, GAO Feng, SZANYI Janos, et al. Mechanistic insight into the passive NOx adsorption in the highly dispersed Pd/HBEA zeolite[J]. Applied Catalysis A: General, 2019, 569: 181-189. |
79 | KHIVANTSEV Konstantin, JAEGERS Nicholas R, KOLEVA Iskra Z, et al. Stabilization of super electrophilic Pd2+ cations in small-pore SSZ-13 zeolite[J]. The Journal of Physical Chemistry C, 2020, 124(1): 309-321. |
80 | CASTOLDI Lidia, MATARRESE Roberto, MORANDI Sara, et al. Low-temperature Pd/FER NOx adsorbers: operando FT-IR spectroscopy and performance analysis[J]. Catalysis Today, 2021, 360(15): 317-325. |
81 | XU Lifeng, LUPESCU Jason, Justin URA, et al. Benefits of Pd doped zeolites for cold start HC/NOx emission reductions for gasoline and E85 fueled vehicles[J]. SAE International Journal of Fuels and Lubricants, 2018, 11(4): 301-317. |
82 | KYRIAKIDOU Eleni A, LEE Jungkuk, CHOI Jae Soon, et al. A comparative study of silver- and palladium-exchanged zeolites in propylene and nitrogen oxide adsorption and desorption for cold-start applications[J]. Catalysis Today, 2021, 360: 220-233. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[9] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[10] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[11] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[14] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[15] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |