1 |
SETHI G, SHANMUGAM M K, WARRIER S, et al. Pro-apoptotic and anti-cancer properties of diosgenin: a comprehensive and critical review[J]. Nutrients, 2018, 10(5): E645-E658.
|
2 |
FULLER S, STEPHENS J M. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome[J]. Advances in Nutrition, 2015, 6(2): 189-197.
|
3 |
GONG G H, QIN Y, HUANG W. Anti-thrombosis effect of diosgenin extract from Dioscorea zingiberensis C.H. Wright in vitro and in vivo[J]. Phytomedicine, 2011, 18(6): 458-463.
|
4 |
LI C, LU Y, DU S, et al. Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice[J]. Theranostics, 2017, 7(17): 4255-4275.
|
5 |
YAO H, TAO X F, XU L N, et al. Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway[J]. Pharmacological Research, 2018, 131: 51-60.
|
6 |
CHEN L, LI Q N, LEI L, et al. Dioscin ameliorates cardiac hypertrophy through inhibition of the MAPK and Akt/GSK3β/mTOR pathways[J]. Life Sciences, 2018, 209: 420-429.
|
7 |
YANG B, XU B, ZHAO H, et al. Dioscin protects against coronary heart disease by reducing oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways[J]. Molecular Medicine Reports, 2018, 18(1): 973-980.
|
8 |
PARAMA D, BORUAH M, YACHNA K, et al. Diosgenin, a steroidal saponin, and its analogs: effective therapies against different chronic diseases[J]. Life Sciences, 2020, 260: 118182.
|
9 |
SHI J, KANTOFF P W, WOOSTER R, et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nature Reviews Cancer, 2017, 17(1): 20-37.
|
10 |
CUNLIFFE D, KIRBY A, ALEXANDER C. Molecularly imprinted drug delivery systems[J]. Advanced Drug Delivery Reviews, 2005, 57(12): 1836-1853.
|
11 |
SHI Y, MA C B, PENG L L, et al. Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers[J]. Advanced Functional Materials, 2015, 25(8): 1219-1225.
|
12 |
SAKAGUCHI N, KOJIMA C, HARADA A, et al. The correlation between fusion capability and transfection activity in hybrid complexes of lipoplexes and pH-sensitive liposomes[J]. Biomaterials, 2008, 29(29): 4029-4036.
|
13 |
HUA Z, CHEN Z, LI Y, et al. Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin[J]. Langmuir, 2008, 24(11): 5773-5780.
|
14 |
ZHAO X Y, CHEN L G, LI B. Magnetic molecular imprinting polymers based on three-dimensional (3D) graphene-carbon nanotube hybrid composites for analysis of melamine in milk powder[J]. Food Chemistry, 2018, 255: 226-234.
|
15 |
ZIMMERMAN S C, LEMCOFF N G. Synthetic hosts via molecular imprinting—Are universal synthetic antibodies realistically possible?[J]. Chemical Communications, 2004(1): 5-14.
|
16 |
DMITRIENKO S G, IRKHA V V, KUZNETSOVA A Y, et al. Use of molecular imprinted polymers for the separation and preconcentration of organic compounds[J]. Journal of Analytical Chemistry, 2004, 59(9): 808-817.
|
17 |
FEIL H, BAE Y H, FEIJEN J, et al. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers[J]. Macromolecules, 1993, 26(10): 2496-2500.
|
18 |
MAKINO K, HIYOSHI J, OHSHIMA H. Kinetics of swelling and shrinking of poly(N-isopropylacrylamide) hydrogels at different temperatures[J]. Colloids and Surfaces B: Biointerfaces, 2000, 19(2): 197-204.
|
19 |
LOWE T L, VIRTANEN J, TENHU H. Interactions of drugs and spin probes with hydrophobically modified polyelectrolyte hydrogels based on N-isopropylacrylamide[J]. Polymer, 1999, 40(10): 2595-2603.
|
20 |
WULFF G. Enzyme-like catalysis by molecularly imprinted polymers[J]. Chemical Reviews, 2002, 102(1): 1-27.
|
21 |
CHEN T, SHAO M W, XU H Y, et al. Molecularly imprinted polymer-coated silicon nanowires for protein specific recognition and fast separation[J]. Journal of Materials Chemistry, 2012, 22(9): 3990-3996.
|
22 |
李龙飞. 温敏型磁性表面分子印迹聚合物识别5-氟尿嘧啶的机理及其缓释行为[D]. 太原: 太原理工大学, 2016.
|
|
LI Longfei. Temperature and magnetic dual responsive surface molecularly imprinted polymers: the recognition mechanism and sustainedly release towards 5-fluorouracil[D]. Taiyuan: Taiyuan University of Technology, 2016.
|
23 |
何典雄. 基于pH/温度双响应的生物相容性水飞蓟宾印迹材料研究[D]. 衡阳: 南华大学, 2019.
|
|
HE Dianxiong. Research of biocmpatible silybin impeinted materials based on dual pH/temperature response[D]. Hengyang: University of South China, 2019.
|
24 |
KOBAYASHI Y, NAKAMITSU Y, ZHENG Y T, et al. Preparation of cyclodextrin-based porous polymeric membrane by bulk polymerization of ethyl acrylate in the presence of cyclodextrin[J]. Polymer, 2019, 177: 208-213.
|
25 |
KAN X W, ZHAO Q, ZHANG Z, et al. Molecularly imprinted polymers microsphere prepared by precipitation polymerization for hydroquinone recognition[J]. Talanta, 2008, 75(1): 22-26.
|
26 |
LIN Z Z, ZHANG H Y, LI L, et al. Application of magnetic molecularly imprinted polymers in the detection of malachite green in fish samples[J]. Reactive and Functional Polymers, 2016, 98: 24-30.
|
27 |
GUO H Q, LIU Y, MA W T, et al. Surface molecular imprinting on carbon microspheres for fast and selective adsorption of perfluorooctane sulfonate[J]. Journal of Hazardous Materials, 2018, 348: 29-38.
|