1 |
TACHIBANA A, FURUTA Y, TAKESHIMA H, et al. Fabrication of wool keratin sponge scaffolds for long-term cell cultivation[J]. Journal of Biotechnology, 2002, 93(2): 165-170.
|
2 |
FAN W S, WANG Y M, YUAN L, et al. Enhancing synovial mesenchymal stem cell adhesion and selection via an avidin-biotin-CD105 binding system for cartilage tissue engineering[J]. Journal of Biomaterials and Tissue Engineering, 2016, 6(1): 27-34.
|
3 |
ESPARZA Y, ULLAH A, BOLUK Y, et al. Preparation and characterization of thermally crosslinked poly(vinyl alcohol)/feather keratin nanofiber scaffolds[J]. Materials & Design, 2017, 133: 1-9.
|
4 |
WANG Y, LI P, XIANG P, et al. Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings[J]. Journal of Materials Chemistry B, 2016, 4(4): 635-648.
|
5 |
YAO C H, LEE C Y, HUANG C H, et al. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair[J]. Materials Science and Engineering C: Materials for Biological Applications, 2017, 79: 533-540.
|
6 |
HE M, ZHANG B N, DOU Y, et al. Fabrication and characterization of electrospun feather keratin/poly(vinyl alcohol) composite nanofibers[J]. RSC Advances, 2017, 7(16): 9854-9861.
|
7 |
WU P P, DAI X Q, CHEN K, et al. Fabrication of regenerated wool keratin/polycaprolactone nanofiber membranes for cell culture[J]. International Journal of Biological Macromolecules, 2018, 114: 1168-1173.
|
8 |
WANG L J. Effect of PLLA/keratin ratio on mechanical and physical properties of electrospun nonwoven fibrous membrane[J]. Journal of Fiber Bioengineering and Informatics, 2018, 1(3): 201-208.
|
9 |
ISARANKURA NA AYUTTHAYA S, TANPICHAI S, WOOTTHIKANOKKHAN J. Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns[J]. Journal of Polymers and the Environment, 2015, 23(4): 506-516.
|
10 |
康晓民. 多巴胺聚合机理及基于多巴胺衍生物功能化表面的研究[D]. 成都: 西南交通大学, 2017.
|
|
KANG Xiaomin. The investigation of polymerization mechanism of dopamine and the fabrication of functionalized surfaces based on dopamine derivatives[D]. Chengdu: Southwest Jiaotong University, 2017.
|
11 |
ZUPPOLINI S, CRUZ-MAYA I, GUARINO V, et al. Optimization of polydopamine coatings onto poly-ε-caprolactone electrospun fibers for the fabrication of bio-electroconductive interfaces[J]. Journal of Functional Biomaterials, 2020, 11(1): 19.
|
12 |
YANG W F, ZHANG X Z, WU K K, et al. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine[J]. Materials Science and Engineering C, 2016, 69: 373-379.
|
13 |
ZHAO J, HAN F L, ZHANG W J, et al. Toward improved wound dressings: effects of polydopamine-decorated poly(lactic-co-glycolic acid) electrospinning incorporating basic fibroblast growth factor and ponericin G1[J]. RSC Advances, 2019, 9(57): 33038-33051.
|
14 |
KIM H J, SONG J H. Improvement in the mechanical properties of carbon and aramid composites by fiber surface modification using polydopamine[J]. Composites Part B: Engineering, 2019, 160: 31-36.
|
15 |
LIN C M, WEN Y S, HUANG X N, et al. Tuning the mechanical performance efficiently of various LLM-105 based PBXs via bioinspired interfacial reinforcement of polydopamine modification[J]. Composites B: Engineering, 2020, 186: 107824.
|
16 |
陈曼, 何明, 郭妍婷, 等. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 材料导报, 2018, 32(8): 1218-1223.
|
|
CHEN Man, HE Ming, GUO Yanting, et al. Crosslinking modification and characterization of the electrospun feather keratin/poly(vinyl alcohol)/poly(ethylene oxide)nanofibrous membrane[J]. Materials Review, 2018, 32(8): 1218-1223.
|
17 |
崔国廉, 但年华, 但卫华. 多巴胺表面修饰胶原膜促进细胞粘附和增殖的研究[J]. 材料导报, 2017, 31(2): 20-24.
|
|
CUI Guolian, DAN Nianhua, DAN Weihua. Surface modification of collagen films with dopamine to promote cell adhesion and proliferation[J]. Materials Review, 2017, 31(2): 20-24.
|
18 |
LIN C C, FU S J. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats[J]. Materials Science and Engineering C, 2016, 58: 254-263.
|
19 |
LI Y, SHI Y Z, DUAN S, et al. Electrospun biodegradable polyorganophosphazene fibrous matrix with poly(dopamine) coating for bone regeneration[J]. Journal of Biomedical Materials Research Part A, 2014, 102(11): 3894-3902.
|
20 |
ZHAO X G, HWANG K J, LEE D, et al. Enhanced mechanical properties of self-polymerized polydopamine-coated recycled PLA filament used in 3D printing[J]. Applied Surface Science, 2018, 441: 381-387.
|
21 |
WANG L, YUAN Y, MU R J, et al. Mussel-inspired fabrication of konjac glucomannan/poly (lactic acid) cryogels with enhanced thermal and mechanical properties[J]. International Journal of Molecular Sciences, 2017, 18(12): 2714.
|
22 |
NOWOGRODSKI C, SIMON I, MAGDASSI S, et al. Fabrication of second skin from keratin and melanin[J]. Polymers, 2020, 12(11): 2568.
|
23 |
CUI Z, LIN J, ZHAN C, et al. Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers[J]. Journal of Biomaterials Science: Polymer Edition, 2020, 31(5): 561-577.
|
24 |
YANG Z Q, SI J H, CUI Z X, et al. Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly(lactic acid)/cellulose nanofibrils[J]. Carbohydrate Polymers, 2017, 174: 750-759.
|
25 |
郝向星. 游离多巴胺对多巴胺能细胞的毒性及其机理研究[D]. 上海: 华东师范大学, 2020.
|
|
HAO Xiangxing. The study of cytotoxicity and mechanism of free dopamine on dopaminergic cells[D]. Shanghai: East China Normal University, 2020.
|