Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3194-3206.DOI: 10.16085/j.issn.1000-6613.2018-1606
• Materials science and technology • Previous Articles Next Articles
Shuai ZHANG(),Siyao WANG,Zhao JIANG,Tao FANG()
Received:
2018-08-06
Online:
2019-07-05
Published:
2019-07-05
Contact:
Tao FANG
通讯作者:
方涛
作者简介:
张帅(1992—),男,硕士研究生,研究方向为静电纺丝技术。E-mail:<email>shaizhangpg2016@stu.xjtu.edu.cn</email>。
基金资助:
CLC Number:
Shuai ZHANG, Siyao WANG, Zhao JIANG, Tao FANG. Application of electrospinning technology in the preparation of dehydrogenation catalysts for ammonia borane hydrolysis[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3194-3206.
张帅, 王斯瑶, 姜召, 方涛. 静电纺丝技术在氨硼烷水解脱氢催化剂制备中的应用[J]. 化工进展, 2019, 38(07): 3194-3206.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1606
序号 | 催化剂 | TOF/mol H2·min -1·mol(贵金属)-1 | E a/kJ·mol | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|
1 | Rh/CeO2 | 2010 | 42.6 | — | [ |
2 | Ru/纳金刚石 | 229 | 50.7 | 3.7 | [ |
3 | Ru/HAp | 137 | 58 | 4.7±0.7 | [ |
4 | Ru0/X-NW | 135 | 77 | 4.4±0.4 | [ |
5 | Rh/g-Al2O3 | 128.2 | 21 | 2.5 | [ |
6 | Rh0/纳米SiO2 | 112 | — | — | [ |
7 | Pt/C | 111 | — | 1.9 | [ |
8 | PAN/Pd-Pt | 51.9 | — | — | [ |
9 | Pd/MIL-101 | 45 | — | 1.8±0.4 | [ |
10 | Pd/CeO2 | 29 | 68 | — | [ |
11 | RGO-Pd | 26.3 | 40 | — | [ |
12 | Pd-HAP | 8.3 | 55 | 3.3±0.8 | [ |
13 | Pd/纳米TiO2 | 7.1 | — | — | [ |
14 | Pd/纳米SiO2 | 6.6 | — | — | [ |
15 | Ag/Pd@PAN NFs | 6.29 | — | 5~20 | [ |
16 | RGO/Pd | 6.25 | 51 | 4 | [ |
17 | Pd/PPy@PAN NFs | 3.9 | 33.5 | 5 | [ |
18 | Pd/纳米Al2O3 | 3.5 | — | — | [ |
序号 | 催化剂 | TOF/mol H2·min -1·mol(贵金属)-1 | E a/kJ·mol | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|
1 | Rh/CeO2 | 2010 | 42.6 | — | [ |
2 | Ru/纳金刚石 | 229 | 50.7 | 3.7 | [ |
3 | Ru/HAp | 137 | 58 | 4.7±0.7 | [ |
4 | Ru0/X-NW | 135 | 77 | 4.4±0.4 | [ |
5 | Rh/g-Al2O3 | 128.2 | 21 | 2.5 | [ |
6 | Rh0/纳米SiO2 | 112 | — | — | [ |
7 | Pt/C | 111 | — | 1.9 | [ |
8 | PAN/Pd-Pt | 51.9 | — | — | [ |
9 | Pd/MIL-101 | 45 | — | 1.8±0.4 | [ |
10 | Pd/CeO2 | 29 | 68 | — | [ |
11 | RGO-Pd | 26.3 | 40 | — | [ |
12 | Pd-HAP | 8.3 | 55 | 3.3±0.8 | [ |
13 | Pd/纳米TiO2 | 7.1 | — | — | [ |
14 | Pd/纳米SiO2 | 6.6 | — | — | [ |
15 | Ag/Pd@PAN NFs | 6.29 | — | 5~20 | [ |
16 | RGO/Pd | 6.25 | 51 | 4 | [ |
17 | Pd/PPy@PAN NFs | 3.9 | 33.5 | 5 | [ |
18 | Pd/纳米Al2O3 | 3.5 | — | — | [ |
序号 | 催化剂 | TOF/mol H2·min -1·mol(贵金属)-1 | E a/kJ·mol | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|
1 | Co-NF | 147 | 41.59 | 32~46 | [ |
2 | Co/MIL-101-1-U | 51.4 | 31.3 | — | [ |
3 | Co/PEI-GO | 39.9 | 28.2 | 2.6 | [ |
4 | Ni0/CoFe2O4 | 38.3 | 62.7 | — | [ |
5 | Co-TiC@CNFs | 32 | 26.19 | 10~40 | [ |
6 | Ni@MSC-30 | 30.7 | — | 6.3 | [ |
7 | 200 ALD cycle Ni/CNT | 26.2 | 32.3 | 5.6 | [ |
8 | Co-CrC/CNFs | 25.78 | 24.2 | — | [ |
9 | PEI-GO3D/Co | 18.5 | 27.4 | — | [ |
10 | Co/石墨烯 | 13.9 | 37.72 | — | [ |
11 | Cu-NF | 11 | 36.7 | — | [ |
12 | Ni/C | 8.8 | 28 | 3.2 | [ |
13 | Ni-NF | 8 | 35.54 | — | [ |
14 | Ni0/PDA-CoFe2O4 | 7.6 | 50.8 | 12.3 | [ |
15 | Co/NPCNW | 7.29 | 25.4 | 3.5 | [ |
16 | Co0/CeO2 | 7 | 43 | — | [ |
17 | Co@NC700 | 5.6 | 31 | 9 | [ |
18 | NiO/SiO2 -CoFe2O4 | 5.3 | 68.2 | 21.7 | [ |
19 | Ni/分子筛 | 5 | 54.4 | 3.9±0.9 | [ |
20 | RGO-Cu | 3.61 | 38.2 | — | [ |
21 | Cu/SiO2 | 3.24 | 36 | 2 | [ |
22 | Cu0/CeO2 | 1.5 | — | — | [ |
23 | Co-B@ TiO2 | — | 16.54 | [ | |
24 | NiCu @ CNFs | — | 28.9 | [ |
序号 | 催化剂 | TOF/mol H2·min -1·mol(贵金属)-1 | E a/kJ·mol | 颗粒尺寸/nm | 参考文献 |
---|---|---|---|---|---|
1 | Co-NF | 147 | 41.59 | 32~46 | [ |
2 | Co/MIL-101-1-U | 51.4 | 31.3 | — | [ |
3 | Co/PEI-GO | 39.9 | 28.2 | 2.6 | [ |
4 | Ni0/CoFe2O4 | 38.3 | 62.7 | — | [ |
5 | Co-TiC@CNFs | 32 | 26.19 | 10~40 | [ |
6 | Ni@MSC-30 | 30.7 | — | 6.3 | [ |
7 | 200 ALD cycle Ni/CNT | 26.2 | 32.3 | 5.6 | [ |
8 | Co-CrC/CNFs | 25.78 | 24.2 | — | [ |
9 | PEI-GO3D/Co | 18.5 | 27.4 | — | [ |
10 | Co/石墨烯 | 13.9 | 37.72 | — | [ |
11 | Cu-NF | 11 | 36.7 | — | [ |
12 | Ni/C | 8.8 | 28 | 3.2 | [ |
13 | Ni-NF | 8 | 35.54 | — | [ |
14 | Ni0/PDA-CoFe2O4 | 7.6 | 50.8 | 12.3 | [ |
15 | Co/NPCNW | 7.29 | 25.4 | 3.5 | [ |
16 | Co0/CeO2 | 7 | 43 | — | [ |
17 | Co@NC700 | 5.6 | 31 | 9 | [ |
18 | NiO/SiO2 -CoFe2O4 | 5.3 | 68.2 | 21.7 | [ |
19 | Ni/分子筛 | 5 | 54.4 | 3.9±0.9 | [ |
20 | RGO-Cu | 3.61 | 38.2 | — | [ |
21 | Cu/SiO2 | 3.24 | 36 | 2 | [ |
22 | Cu0/CeO2 | 1.5 | — | — | [ |
23 | Co-B@ TiO2 | — | 16.54 | [ | |
24 | NiCu @ CNFs | — | 28.9 | [ |
1 | ZHAN W , ZHU Q L , XU Q .Dehydrogenation of ammonia borane by metal nanoparticle catalysts[J].ACS Catalysis, 2016, 6(10): 6892-6905. |
2 | SUH M P, PARK H J , PRASAD T K , et al .Hydrogen storage in in metal-organic frameworks[J]. Chemical Reviews, 2011, 112(2): 782-835. |
3 | BULUT A , YURDERI M , ERTAS I E , et al .Carbon dispersed copper-cobalt alloy nanoparticles: a cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane[J]. Applied Catalysis B: Environmental, 2016, 180(3): 121-129. |
4 | JAIN I P , JAIN P , JAIN A .Novel hydrogen storage materials: a review of lightweight complex hydrides[J].Journal of Alloys & Compounds, 2010, 503(2): 303-339. |
5 | AKBAYRAK S , TANEROĞLU O , ÖZKAR S .Nanoceria supported cobalt(0) nanoparticles: a magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].New Journal of Chemistry, 2017, 41(14): 6546-6552. |
6 | TAMBOLI A H , CHAUGULE A A , SHEIKH F A , et al .Synthesis and application of CeO2–NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis[J].Energy, 2015, 89: 568-575. |
7 | ZHONG D C , ARANISHI K , SINGH A K , et al .The synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage[J]. Chemical Communications, 2012, 48(98): 11945-11947. |
8 | YANG L , SU J , MENG X , et al . In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane[J].Journal of Materials Chemistry A, 2013, 1(34): 10016-10023. |
9 | YAN J M , ZHANG X B , HAN S , et al .Magnetically recyclable Fe-Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere[J].Journal of Power Sources, 2009, 194(1):478-481. |
10 | YOUSEF A , BARAKAT N A M , EL-NEWEHY M H , et al .Catalytic hydrolysis of ammonia borane for hydrogen generation using Cu(0) nanoparticles supported on TiO2 nanofibers[J].Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2015, 470: 194-201. |
11 | BROCKMAN A , ZHENG Y , GORE J .A study of catalytic hydrolysis of concentrated ammonia borane solutions[J].International Journal of Hydrogen Energy, 2010, 35(14): 7350-7356. |
12 | SUN W , LU X , TONG Y , et al .A one-pot synthesis of a highly dispersed palladium/polypyrrole/polyacrylonitrile nanofiber membrane and its recyclable catalysis in hydrogen generation from ammonia borane[J].Journal of Materials Chemistry A, 2014, 19(2): 6740-6746. |
13 | NADAGOUDA M N , VARMA R S .A greener synthesis of core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C[J].Crystal Growth & Design, 2007, 7(12): 2582-2587. |
14 | TONBUL Y , AKBAYRAK S , ÖZKAR S .Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy, 2016, 41(26): 11154-11162. |
15 | XU Q , CHANDRA M .A portable hydrogen generation system: catalytic hydrolysis of ammonia-borane[J].Journal of Alloys & Compounds, 2007, 446/447(22): 729-732. |
16 | CHANDRA M , XU Q .Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J].Journal of Power Sources, 2007, 168(1): 135-142. |
17 | SHINJOH H .Noble metal sintering suppression technology in three-way catalyst: automotive three-way catalysts with the noble metal sintering suppression technology based on the support anchoring effect[J].Catalysis Surveys from Asia, 2009, 13(3): 184-190. |
18 | WANG Z Z , ZHAI S R , ZHAI B , et al .One-step green synthesis of multifunctional Fe3O4/Cu nanocomposites toward efficient reduction of organic dyes[J].European Journal of Inorganic Chemistry, 2015(10): 1692-1699. |
19 | ZHAO D , FENG J , HUO Q , et al .Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science, 1998, 279(5350): 548-552. |
20 | AND D L, XIA Y .Fabrication of titania nanofibers by electrospinning[J].Proceedings of SPIE:The International Society for Optical Engineering, 2003, 3(4): 555-560. |
21 | 丁源维, 王騊, 姚菊明, 等 .静电纺制备TiO2/PVA复合纳米纤维及其光催化性能研究[J].浙江理工大学学报, 2013, 30(1): 31-35. |
DING Yuanwei , WANG Tao , YAO Juming , et al .Photocatalytic performance investigation of TiO2/PVA nanofibers prepared by electrospinning[J]. Journal of Zhejiang Institute of Science and Technology, 2013, 30(1): 31-35. | |
22 | MAO Z , XIE R , FU D , et al .PAN supported Ag-AgBr@Bi20 TiO32 electrospun fiber mats with efficient visible light photocatalytic activity and antibacterial capability[J].Separation & Purification Technology, 2017, 176: 277-286. |
23 | ZHANG L , ZHANG Q , XIE H , et al .Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis[J].Applied Catalysis B: Environmental, 2016, 201: 470-478. |
24 | HONG S , HOU M , ZHANG H , et al .A high-performance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition[J]. Electrochimica Acta, 2017, 245: 403-409. |
25 | CHANDRAWATI R , MTJ O, TCC M, et al .Enzyme prodrug therapy engineered into electrospun fibers with embedded liposomes for controlled, localized synthesis of therapeutics[J]. Advanced Healthcare Materials, 2017, 6(17): 1700385. |
26 | WU D , FENG Q , XU T , et al .Electrospun blend nanofiber membrane consisting of polyurethane, amidoxime polyarcylonitrile, and β-cyclodextrin as high-performance carrier/support for efficient and reusable immobilization of laccase[J]. Chemical Engineering Journal, 2018, 331: 517-526. |
27 | YU D , BAI J , WANG J , et al .Assembling formation of highly dispersed Pd nanoparticles supported 1D carbon fiber electrospun with excellent catalytic active and recyclable performance for Suzuki reaction[J].Applied Surface Science, 2017, 399: 185-191. |
28 | DEITZEL J M , KLEINMEYER J D , HIRVONEN J K , et al .Controlled deposition of electrospun poly(ethylene oxide) fibers[J].Polymer, 2001, 42(19): 8163-8170. |
29 | RENEKER D H , YARIN A L , FONG H , et al .Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J].J. Appl. Phys., 2000, 87(9): 4531-4547. |
30 | 汪成伟, 邵珠帅, 王飞龙, 等 .静电纺丝纤维应用的研究进展[J].微纳电子技术, 2014, 51(12): 770-775. |
WANG Chengwei , SHAO Zhushuai , WANG Feilong , et al .Research progress of the application of the electrostatic spinning fiber[J].Micronanoelectronic Technology, 2014, 51(12): 770-775. | |
31 | THERON S A , YARIN A L , ZUSSMAN E , et al .Multiple jets in electrospinning: experiment and modeling[J].Polymer, 2005, 46(9):2889-2899. |
32 | KIM G H, CHO Y S, WAN D K .Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode[J].European Polymer Journal, 2006, 42(9): 2031-2038. |
33 | TOMASZEWSKI W , SZADKOWSKI M .Investigation of electrospinning with the use of a multi-jet electrospinning head[J].Fibres & Textiles in Eastern Europe, 2005, 13(4):22-26. |
34 | 贾志东, 杨颖, 关志成, 等 .高效多针静电纺丝喷丝装置: CN 1962966A[P]. 2007-05-16. |
JIA Zhidong , YANG Ying , GUAN Zhicheng , et al . High efficiency multi needle electrostatic spinning device: CN1962966A[P]. 2007-05-16. | |
35 | 杨恩龙, 史晶晶 .多喷头静电纺丝研究进展[J].产业用纺织品, 2009, 27(9): 1-4. |
YANG Enlong, SHI Jingjing, Presentation of research on electrospinning with multiple nozzles[J].Technical Textiles, 2009, 27(9): 1-4. | |
36 | JIRSAK O , SANETRNIK F , LUKAS D , et al .A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method: EP 1673493 B1[P].2009-07-08. |
37 | DEITZEL J M , KLEINMEYER J D , HIRVONEN J K , et al .Controlled deposition of electrospun poly(ethylene oxide) fibers[J].Polymer, 2001, 42(19): 8163-8170. |
38 | THERON A , ZUSSMAN E , YARIN A L .Electrostatic field-assisted alignment of electrospun nanofibres[J].Nanotechnology, 2001, 12(3): 384. |
39 | HUANG Z M , ZHANG Y Z , KOTAKI M , et al .A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J].Composites Science & Technology, 2003, 63(15): 2223-2253. |
40 | LI D , WANG Y , XIA Y .Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J].Nano Letters, 2003, 3(8): 1167-1171. |
41 | KIM J S, RENEKER D H .Polybenzimidazole nanofiber produced by electrospinning[J]. Polymer Engineering & Science,1999, 39(5): 849-854. |
42 | SMIT E , BŰTTNER U , SANDERSON R D .Continuous yarns from electrospun fibers[J].Polymer, 2005, 46(8): 2419-2423. |
43 | DALTON P D , KLEE D , MÖLLER M .Electrospinning with dual collection rings[J].Polymer, 2005, 46(3): 611-614. |
44 | YOUSEF A , BARAKAT N A M , EL-NEWEHY M H , et al .Catalytic hydrolysis of ammonia borane for hydrogen generation using Cu(0) nanoparticles supported on TiO2 nanofibers[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 194-201. |
45 | YOUSEF A , BARAKAT N A M , EL-NEWEHY M , et al .Chemically stable electrospun NiCu nanorods@carbon nanofibers for highly efficient dehydrogenation of ammonia borane[J].International Journal of Hydrogen Energy, 2012, 37(23): 17715-17723. |
46 | BARAKAT N A M .Effective Co-Mn-O nanofibers for ammonia borane hydrolysis[J].Materials Letters, 2013, 106: 229-232. |
47 | AL-ENIZI A M , BROOKS R M , ABUTALEB A , et al .Electrospun carbon nanofibers containing Co-TiC nanoparticles-like superficial protrusions as a catalyst for H2 gas production from ammonia borane complex[J].Ceramics International, 2017, 43(17): 15735-15742. |
48 | YOUSEF A , BROOKS R M , EL-HALWANY M M , et al .Electrospun CoCr7 C3-supported C nanofibers: effective, durable, and chemically stable catalyst for H2 gas generation from ammonia borane[J].Molecular Catalysis, 2017, 434: 32-38. |
49 | LI Z Y , ZHANG H N , ZHENG W , et al .Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers[J].Journal of the American Chemical Society, 2008, 130(15): 5036-5037. |
50 | FILIZ B C , FIGEN A K .Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency[J].International Journal of Hydrogen Energy, 2016, 41(34): 15433-15442. |
51 | NIRMALA R , KIM H Y, YI C , et al .Electrospun nickel doped titanium dioxide nanofibers as an effective photocatalyst for the hydrolytic dehydrogenation of ammonia borane[J].International Journal of Hydrogen Energy, 2012, 37(13):10036-10045. |
52 | YOUSEF A , BARAKAT N A M , KIM H Y .Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane[J].Applied Catalysis A: General, 2013, 467: 98-106. |
53 | BARAKAT N A M , MOTLAK M , TAHA A , et al .Super effective Zn-Fe-doped TiO2 nanofibers as photocatalyst for ammonia borane hydrolysis[J].International Journal of Green Energy, 2015, 13(7): 642-649. |
54 | TONG Y , LU X , SUN W , et al .Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane[J].Journal of Power Sources, 2014, 261: 221-226. |
55 | ZHANG Z , JIANG Y , CHI M , et al .Electrospun polyacrylonitrile nanofibers supported alloyed Pd-Pt nanoparticles as recyclable catalysts for hydrogen generation from the hydrolysis of ammonia borane[J].RSC Advances, 2015, 5(114): 94456-94461. |
56 | SUN D , MAZUMDER V , Ö METIN , et al . Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles[J]. ACS Nano, 2011, 5(8): 6458-6464. |
57 | PANTHI G , BARAKAT N A M , ABDELRAZEK K K , et al .Encapsulation of CoS nanoparticles in PAN electrospun nanofibers: effective and reusable catalyst for ammonia borane hydrolysis and dyes photodegradation[J].Ceramics International, 2013, 39(2): 1469-1476. |
58 | RYSCHKEWITSCH G E . Amine borane I.kinetics of acid hydrolysis of trimethylamine borane[J]. Journal of the American Chemical Society, 1960, 82(13): 3290-3294. |
59 | KELLY H C , MARCHELLI F R , GIUSTO M B . The kinetics and mechanism of solvolysis of amineboranes[J].Inorganic Chemistry, 1964, 3(3): 431-437. |
60 | CHIRIAC R , TOCHE F , DEMIRCI U B , et al .Ammonia borane decomposition in the presence of cobalt halides[J].International Journal of Hydrogen Energy, 2011, 36(20): 12955-12964. |
61 | TOCHE F , CHIRIAC R , DEMIRCI U B , et al .Ammonia borane thermolytic decomposition in the presence of metal (Ⅱ) chlorides[J].International Journal of Hydrogen Energy, 2012, 37(8): 6749-6755. |
62 | LI Y , FANG F , SONG Y , et al .Enhanced dehydrogenation of ammonia borane by reaction with alkaline earth metal chlorides[J].International Journal of Hydrogen Energy, 2012, 37(5): 4274-4279. |
63 | AKBAYRAK S , TONBUL Y , ÖZKAR S .Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J].Applied Catalysis B: Environmental, 2016, 198: 162-170. |
64 | FAN G , LIU Q , TANG D , et al .Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2016, 41(3):1542-1549. |
65 | MANNA J , AKBAYRAK S , ÖZKAR S .Palladium(0) nanoparticles supported on polydopamine coated Fe3O4 as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane[J].RSC Advances, 2016, 6(104): 102035-102042. |
66 | MANNA J , AKBAYRAK S , ÖZKAR S .Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane[J]. Applied Catalysis B: Environmental, 2017, 208: 104-115. |
67 | AKBAYRAK S , KAYA M , VOLKAN M , et al . Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: a highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane[J]. Applied Catalysis B: Environmental, 2014, 147(8): 387-393. |
68 | DAI H , SU J , KAI H, et al . Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2014, 39(10): 4947-4953. |
69 | TONBUL Y , AKBAYRAK S , ÖZKAR S .Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy, 2016, 41(26): 11154-11162. |
70 | KILIÇ B , ŞENCANLI S , Ö METIN .Hydrolytic dehydrogenation of ammonia borane catalyzed by reduced graphene oxide supported monodisperse palladium nanoparticles: high activity and detailed reaction kinetics[J].Journal of Molecular Catalysis A: Chemical, 2012, 361/362: 104-110. |
71 | RAKAP M , ÖZKAR S .Hydroxyapatite-supported palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J].International Journal of Hydrogen Energy, 2011, 36(12): 7019-7027. |
72 | XI P , CHEN F , XIE G , et al .Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J].Nanoscale, 2012, 4(18): 5597-5601. |
73 | AKBAYRAK S , ERDEK P , ÖZKAR S .Hydroxyapatite supported ruthenium(0) nanoparticles catalyst in hydrolytic dehydrogenation of ammonia borane: insight to the nanoparticles formation and hydrogen evolution kinetics[J].Applied Catalysis B: Environmental, 2013, 142: 187-195. |
74 | AKBAYRAK S , OZKAR S .Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane[J].Dalton Trans, 2013, 43(4): 1797-1805. |
75 | DURAP F , ZAHMAKıRAN M , ÖZKAR S .Water soluble laurate-stabilized rhodium(0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane[J].Applied Catalysis A: General, 2009, 369(1/2): 53-59. |
76 | YOUSEF A , BROOKS R M , EL-HALWANY M M , et al .A novel and chemical stable Co-B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex[J].International Journal of Hydrogen Energy, 2016, 41(1): 285-293. |
77 | LIU P , GU X , KANG K , et al .Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J].ACS Applied Materials & Interfaces, 2017, 9(12): 10759-10767. |
78 | HU J , CHEN Z , LI M , et al .Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane[J].ACS Applied Materials & Interfaces, 2014, 6(15): 13191. |
79 | MANNA J , AKBAYRAK S , ÖZKAR S .Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane[J].J. Colloid Interface Sci., 2017, 508: 359-368. |
80 | LI P Z , AIJAZ A , XU Q .Highly dispersed surfactant-free nickel nanoparticles and their remarkable catalytic activity in the hydrolysis of ammonia borane for hydrogen generation[J].Angewandte Chemie, 2012, 51(27): 6753. |
81 | ZHANG J , CHEN C , YAN W , et al .Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane[J].Catalysis Science & Technology, 2016, 6(7): 2112-2119. |
82 | LU H , LI M , HU J .A stable, efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane[J].Catalysis Science & Technology, 2016, 6(19): 7186-7192. |
83 | YANG L , CAO N , CHENG D , et al .Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane[J].Materials Letters, 2014, 115(2): 113-116. |
84 | METIN O , MAZUMDER V , OZKAR S , et al .Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane[J].Journal of the American Chemical Society, 2010, 132(5): 1468-1469. |
85 | ZHOU L , MENG J , LI P , et al .Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane[J].Materials Horizons, 2017, 4(2): 268-273. |
86 | WANG H , ZHAO Y , CHENG F , et al . Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane[J].Catalysis Science & Technology, 2016, 6(10): 3443-3448. |
87 | ZAHMAKIRAN M , AYVALI T , AKBAYRAK S , et al .Zeolite framework stabilized nickel(0) nanoparticles: active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride[J].Catalysis Today, 2011, 170(1): 76-84. |
88 | YANG Y , LU Z H , HU Y , et al .Facile in situ synthesis of copper nanoparticles supported on reduced graphene oxide for hydrolytic dehydrogenation of ammonia borane[J]. RSC Advances, 2014, 4(27):13749-13752. |
89 | YAO Q , LU Z H , ZHANG Z , et al .One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J].Scientific Reports, 2014, 4(4): 7597. |
90 | BARAKAT N A M .Catalytic and photo hydrolysis of ammonia borane complex using Pd-doped Co nanofibers[J].Applied Catalysis A: General, 2013, 451: 21-27. |
91 | YOUSEF A , BROOKS R M , EL-HALWANY M M , et al .CuO /S-doped TiO2 nanoparticles-decorated carbon nanofibers as novel and efficient photocatalyst for hydrogen generation from ammonia borane[J]. Ceramics International, 2016, 42(1): 1507-1512. |
92 | MU J , SHAO C , GUO Z , et al .High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures[J].ACS Applied Materials & Interfaces, 2011, 3(2): 590-596. |
93 | SUTTON A D , BURRELL A K , DIXON D A , et al . Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia[J].Science, 2011, 331(6023): 1426-1429. |
94 | SUMMERSCALES O T , GORDON J C . Regeneration of ammonia borane from spent fuel materials[J].Dalton Transactions, 2013, 42(28): 10075-10084. |
95 | Christian RELLER , MERTENS Florian O . A self-contained regeneration scheme for spent ammonia borane based on the catalytic hydrodechlorination of BCl3 [J]. Angewandte Chemie International Edition, 2012, 51(47): 11731-11735. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[5] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[6] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[7] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[8] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[9] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[10] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[11] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[12] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[13] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[14] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[15] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |