Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2839-2851.DOI: 10.16085/j.issn.1000-6613.2020-1244
• Resources and environmental engineering • Previous Articles Next Articles
WU Yang1(), LIU Zhenzhong2(), JIANG Wen1, WANG Jinxin1
Received:
2020-07-02
Online:
2021-05-24
Published:
2021-05-06
Contact:
LIU Zhenzhong
通讯作者:
刘振中
作者简介:
吴阳(1995—),男,硕士研究生,研究方向为水处理技术与理论。E-mail:CLC Number:
WU Yang, LIU Zhenzhong, JIANG Wen, WANG Jinxin. Research progress on removal of several common emerging pollutants by biochar[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2839-2851.
吴阳, 刘振中, 江文, 王金鑫. 生物炭对几类常见新兴污染物去除的研究进展[J]. 化工进展, 2021, 40(5): 2839-2851.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1244
污染物 | 地点或地区 和时间 | 污染物 分布介质 | 取样点位置 | 检出污染物 | 检出浓度范围 | 样本数量 | 检出率 /% | 检出平均值 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
EDCs(内分泌干扰物) | |||||||||
国内 | 太湖流域(2011) | 河流 | 宜溧河 | 4-壬基酚(NP) | 156.2~434.0ng·L-1 | 10 | — | 264.3ng·L-1 | [ |
上海市(2017) | 河流 | 黄浦江上游 | 双酚A(BPA) | 26.0~64.32ng·L-1 | 8 | 100 | 41.56ng·L-1 | [ | |
双酚S(BPS) | 4.83~25.57ng·L-1 | 100 | 13.26ng·L-1 | ||||||
国外 | 南非 (2013—2014) | 饮用水 | 开普敦 | 邻苯二甲酸(2-乙基己基)酯(DEHP) | 60.78~3415.19ng·L-1 | 10 | — | 574.62ng·L-1 | [ |
新加坡(2011) | 海洋 | 沿海地区 | 双酚A(BPA) | 96.0~694.0ng·L-1 | 27 | 48 | — | [ | |
PPCPs(药物和个人洗护用品) | |||||||||
国内 | 重庆市(2019) | 土壤 | 蔬菜基地土壤 | 四环素(TC) | 0~507.2μg·kg-1 | 104 | 77.8~100 | 39.1μg·kg-1 | [ |
太湖流域(2015) | 沉积物 | 太湖周边河流入库口 | 咖啡因(CFE) | 25.4~482ng·g-1 | 15 | 100 | 129.0ng·g-1 | [ | |
厦门市(2018) | 饮用水 | 莲花水库 | 四环素(TC) | ND~155.05ng·L-1 | 5 | 65 | 24.53ng·L-1 | [ | |
贵州省(2018) | 湿地 | 咸宁县草海湿地内 | 罗红霉素(ROX) | 0.97~195ng·L-1 | 26 | 100 | 17.2ng·L-1 | [ | |
国外 | 美国(2010) | 湖泊 | 密歇根湖 | 磺胺甲唑(SMX) | 1.5~200ng·L-1 | 64 | 100 | 26.0ng·L-1 | [ |
韩国(2008) | 河流 | 汉江 | 碘普罗胺(IOP) | 33~1800ng·L-1 | 6 | 100 | 1013ng·L-1 | [ | |
新加坡(2011) | 海洋 | 沿海地区 | 咖啡因(CFE) | 59~655ng·L-1 | 27 | 11 | — | [ |
污染物 | 地点或地区 和时间 | 污染物 分布介质 | 取样点位置 | 检出污染物 | 检出浓度范围 | 样本数量 | 检出率 /% | 检出平均值 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
EDCs(内分泌干扰物) | |||||||||
国内 | 太湖流域(2011) | 河流 | 宜溧河 | 4-壬基酚(NP) | 156.2~434.0ng·L-1 | 10 | — | 264.3ng·L-1 | [ |
上海市(2017) | 河流 | 黄浦江上游 | 双酚A(BPA) | 26.0~64.32ng·L-1 | 8 | 100 | 41.56ng·L-1 | [ | |
双酚S(BPS) | 4.83~25.57ng·L-1 | 100 | 13.26ng·L-1 | ||||||
国外 | 南非 (2013—2014) | 饮用水 | 开普敦 | 邻苯二甲酸(2-乙基己基)酯(DEHP) | 60.78~3415.19ng·L-1 | 10 | — | 574.62ng·L-1 | [ |
新加坡(2011) | 海洋 | 沿海地区 | 双酚A(BPA) | 96.0~694.0ng·L-1 | 27 | 48 | — | [ | |
PPCPs(药物和个人洗护用品) | |||||||||
国内 | 重庆市(2019) | 土壤 | 蔬菜基地土壤 | 四环素(TC) | 0~507.2μg·kg-1 | 104 | 77.8~100 | 39.1μg·kg-1 | [ |
太湖流域(2015) | 沉积物 | 太湖周边河流入库口 | 咖啡因(CFE) | 25.4~482ng·g-1 | 15 | 100 | 129.0ng·g-1 | [ | |
厦门市(2018) | 饮用水 | 莲花水库 | 四环素(TC) | ND~155.05ng·L-1 | 5 | 65 | 24.53ng·L-1 | [ | |
贵州省(2018) | 湿地 | 咸宁县草海湿地内 | 罗红霉素(ROX) | 0.97~195ng·L-1 | 26 | 100 | 17.2ng·L-1 | [ | |
国外 | 美国(2010) | 湖泊 | 密歇根湖 | 磺胺甲唑(SMX) | 1.5~200ng·L-1 | 64 | 100 | 26.0ng·L-1 | [ |
韩国(2008) | 河流 | 汉江 | 碘普罗胺(IOP) | 33~1800ng·L-1 | 6 | 100 | 1013ng·L-1 | [ | |
新加坡(2011) | 海洋 | 沿海地区 | 咖啡因(CFE) | 59~655ng·L-1 | 27 | 11 | — | [ |
类型 | 生物炭 原料 | 改性 方式 | 热解温度 /℃ | 热解时间 | 目标污染物 | 比表面积 /m2 | 孔容积 /cm3·g-1 | 最佳反应pH | 吸附等温线模型 | 动力学模型 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最符合 等温线模型 | 最大吸附容量或 模型常数 | 最符合动力学模型 | 相关 系数 (R2) | ||||||||||
农业废料 | 松木 | FeCl2磁化 | 650 | — | 磺胺甲唑 | 125.8 | 0.14 | 4.5 | Redlich-Peterson | qm,L=19.9mg·g-1 | — | — | [ |
松木 | NaOH活化 | 800 | 2h | 金霉素 | 852.95 | — | 1 | Langmuir | qm,L=434.783mg·g-1 | — | — | [ | |
— | — | — | 14.68 | — | 1 | Langmuir | qm,L=2.383mg·g-1 | — | — | ||||
木片 | — | 550 | 8h | IBP (RO浓缩液中) | 369.1 | 0.094 | 4 | Langmuir和Freunlich | qm,L=12.5mg·g-1 | PSO | 0.949 | [ | |
磺胺甲唑 (RO浓缩液中) | 4 | — | — | PSO | 0.981 | ||||||||
IBP (去离子水中) | 4 | Langmuir和Freunlich | qm,L=21.7mg·g-1 | PSO | 0.986 | ||||||||
磺胺甲唑 (去离子水中) | 4 | — | — | PSO | 0.964 | ||||||||
软木 | — | 500 | — | 萘普生 (新鲜尿液) | 313 | 0.028 | — | Langmuir | qm,L=17.53mg·g-1 | PSO | 0.9968 | [ | |
萘普生 (水解尿液) | — | Langmuir | qm,L=29.03mg·g-1 | PSO | 0.9954 | ||||||||
扑热痛息 (新鲜尿液) | — | Dubinin-Radushkevich | qm,DR=24.30mg·g-1 | PSO | 0.9995 | ||||||||
扑热痛息 (水解尿液) | — | Dubinin-Radushkevich | qm,DR=25.27mg·g-1 | PSO | 0.9960 | ||||||||
竹子 | — | 315 | — | 萘普生 (新鲜尿液) | 68.7 | 0.017 | — | Langmuir | qm,L=10.07mg·g-1 | PSO | 0.9964 | ||
萘普生 (水解尿液) | — | Langmuir | qm,L=6.94mg·g-1 | PSO | 0.9995 | ||||||||
扑热痛息 (新鲜尿液) | — | Dubinin-Radushkevich | qm,DR=18.44mg·g-1 | PSO | 0.9996 | ||||||||
扑热痛息 (水解尿液) | — | Dubinin-Radushkevich | qm,DR=16.03mg·g-1 | PSO | 0.9992 | ||||||||
竹子 | 负载磁性CuZnFe2O4 | 550 | 1h | 双酚A | 61.48 | 0.157 | 3 | Freunlich | qm,L=263.2mg·g-1 | PSO | 0.975 | [ | |
磺胺甲唑 | 3 | Freunlich | qm,L=212.8mg·g-1 | PSO | 0.972 | ||||||||
— | 550 | 1h | 双酚A | 24.56 | 0.048 | 3 | Freunlich | qm,L=185.2mg·g-1 | PSO | 0.989 | |||
磺胺甲唑 | 3 | Freunlich | qm,L=128.2mg·g-1 | PSO | 0.952 | ||||||||
椰壳 | 研磨,负载磁性氧化铁 | 500 | 1.5h | 卡马西平 | 365 | 0.042 | 4 | Freunlich | qm,L=62.7mg·g-1 | — | — | [ | |
四环素 | 4 | Freunlich | qm,L=94.2mg·g-1 | — | — | ||||||||
柚子皮 | — | 700 | 3h | 扑热息痛 | 1033±20 | 1.074 | — | Redlich-Peterson | qm,L=147mg·g-1 | Elovich | >0.987 | [ | |
甘蔗渣 | 蒸汽活化 | 500 | 1h | IBP | — | — | 2 | Langmuir和Freunlich | qm,L=11.9mg·g-1 | PSO | 0.997 | [ | |
磷酸活化 (浸泡24h) | 400 | 1h | IBP | — | — | 2 | Langmuir和Freunlich | qm,L=13.51mg·g-1 | PSO | 0.998 | |||
茶叶 | 蒸汽活化 | 700 | 2h | 咖啡因 | 576 | 0.1091 | 3 | Temkin | AT=2.399L·mg-1 | Elovich | 0.972 | [ | |
棉花 桔梗 | — | 350 | — | 磺胺类药物 (磷酸盐溶液) | 68.4 | 0.074 | — | Langmuir | qm=10μmol·g-1 | — | — | [ | |
— | 磺胺类药物 (尿液) | — | Langmuir | qm=10μmol·g-1 | — | — | |||||||
污泥 | 造纸厂初级 污泥 | — | 800 | 2.5h | 西酞普兰 | 209.12 | 0.13 | — | Langmuir | qm,L=(19.6±0.5)mg·g-1 | PSO | 0.9968 | [ |
造纸厂生物 污泥 | — | 800 | 10min | 西酞普兰 | 10.82 | 0.02 | — | Freunlich | KF=(0.165±0.008) mg·g-1(mg·L-1)-N | PSO | 0.9559 | ||
含铁纺织厂 污泥 | — | 400 | 4h | 氧氟沙星 | — | — | — | Langmuir | qm,L=19.74mg·g-1 | PSO | >0.982 | [ | |
造纸厂初级 污泥 | — | 800 | 2.5h | 甲磺酸三卡因 | 414 | 0.95 | — | Langmuir-Freunlich | DEM | 0.9998 | [ | ||
恩佐卡因 | — | Langmuir-Freunlich | qm,LF=(107±30)mg·g-1 | DEM | 0.9991 | ||||||||
2-苯氧乙醇 | — | Langmuir-Freunlich | qm,LF=(63±7)mg·g-1 | DEM | 0.9995 | ||||||||
造纸厂生物 污泥 | — | 800 | 2.5h | 甲磺酸三卡因 | 258 | 0.39 | — | Langmuir-Freunlich | qm,LF=(109±29)mg·g-1 | DEM | 0.9970 | ||
恩佐卡因 | — | Langmuir-Freunlich | qm,LF=(53±3)mg·g-1 | DEM | 0.9993 | ||||||||
2-苯氧乙醇 | — | Langmuir-Freunlich | qm,LF=(83±6)mg·g-1 | DEM | 0.9995 | ||||||||
其他固废 | 城市 垃圾 | 掺杂蒙脱石 | 450 | 4h | 环丙沙星 | 6.51 | — | 5 | Hills | qm,L=167.36mg·g-1 | PSO | 0.98 | [ |
— | 450 | 4h | 环丙沙星 | 4.33 | — | 5 | Hills | qm,L=122.16mg·g-1 | Elovich | 0.95 | |||
葡萄糖 | — | 900 | 3h | 扑热息痛 | 1292±31 | 0.704 | — | Redlich-Peterson | qm,L=286mg·g-1 | Elovich | >0.993 | [ | |
城市 垃圾 | 负载膨润土(混合2h) | 450 | 30min | 环丙沙星 | — | — | 6.5~7 | Hills | qm,L=286.604mg·g-1 | Elovich | 0.937 | [ | |
— | 450 | 30min | 环丙沙星 | — | — | 6.5~7 | Hills | qm,L=167.61mg·g-1 | PSO | 0.989 | |||
鳕鱼骨 | — | 1000 | 1h | 双氯芬酸 | 80.0 | — | — | Langmuir和Freunlich | qm,L=43.29mg·g-1 | Crank 方程 | 0.942 | [ | |
1h | 氟西汀 | — | Langmuir和Freunlich | qm,L=55.87mg·g-1 | Crank 方程 | 0.780 |
类型 | 生物炭 原料 | 改性 方式 | 热解温度 /℃ | 热解时间 | 目标污染物 | 比表面积 /m2 | 孔容积 /cm3·g-1 | 最佳反应pH | 吸附等温线模型 | 动力学模型 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最符合 等温线模型 | 最大吸附容量或 模型常数 | 最符合动力学模型 | 相关 系数 (R2) | ||||||||||
农业废料 | 松木 | FeCl2磁化 | 650 | — | 磺胺甲唑 | 125.8 | 0.14 | 4.5 | Redlich-Peterson | qm,L=19.9mg·g-1 | — | — | [ |
松木 | NaOH活化 | 800 | 2h | 金霉素 | 852.95 | — | 1 | Langmuir | qm,L=434.783mg·g-1 | — | — | [ | |
— | — | — | 14.68 | — | 1 | Langmuir | qm,L=2.383mg·g-1 | — | — | ||||
木片 | — | 550 | 8h | IBP (RO浓缩液中) | 369.1 | 0.094 | 4 | Langmuir和Freunlich | qm,L=12.5mg·g-1 | PSO | 0.949 | [ | |
磺胺甲唑 (RO浓缩液中) | 4 | — | — | PSO | 0.981 | ||||||||
IBP (去离子水中) | 4 | Langmuir和Freunlich | qm,L=21.7mg·g-1 | PSO | 0.986 | ||||||||
磺胺甲唑 (去离子水中) | 4 | — | — | PSO | 0.964 | ||||||||
软木 | — | 500 | — | 萘普生 (新鲜尿液) | 313 | 0.028 | — | Langmuir | qm,L=17.53mg·g-1 | PSO | 0.9968 | [ | |
萘普生 (水解尿液) | — | Langmuir | qm,L=29.03mg·g-1 | PSO | 0.9954 | ||||||||
扑热痛息 (新鲜尿液) | — | Dubinin-Radushkevich | qm,DR=24.30mg·g-1 | PSO | 0.9995 | ||||||||
扑热痛息 (水解尿液) | — | Dubinin-Radushkevich | qm,DR=25.27mg·g-1 | PSO | 0.9960 | ||||||||
竹子 | — | 315 | — | 萘普生 (新鲜尿液) | 68.7 | 0.017 | — | Langmuir | qm,L=10.07mg·g-1 | PSO | 0.9964 | ||
萘普生 (水解尿液) | — | Langmuir | qm,L=6.94mg·g-1 | PSO | 0.9995 | ||||||||
扑热痛息 (新鲜尿液) | — | Dubinin-Radushkevich | qm,DR=18.44mg·g-1 | PSO | 0.9996 | ||||||||
扑热痛息 (水解尿液) | — | Dubinin-Radushkevich | qm,DR=16.03mg·g-1 | PSO | 0.9992 | ||||||||
竹子 | 负载磁性CuZnFe2O4 | 550 | 1h | 双酚A | 61.48 | 0.157 | 3 | Freunlich | qm,L=263.2mg·g-1 | PSO | 0.975 | [ | |
磺胺甲唑 | 3 | Freunlich | qm,L=212.8mg·g-1 | PSO | 0.972 | ||||||||
— | 550 | 1h | 双酚A | 24.56 | 0.048 | 3 | Freunlich | qm,L=185.2mg·g-1 | PSO | 0.989 | |||
磺胺甲唑 | 3 | Freunlich | qm,L=128.2mg·g-1 | PSO | 0.952 | ||||||||
椰壳 | 研磨,负载磁性氧化铁 | 500 | 1.5h | 卡马西平 | 365 | 0.042 | 4 | Freunlich | qm,L=62.7mg·g-1 | — | — | [ | |
四环素 | 4 | Freunlich | qm,L=94.2mg·g-1 | — | — | ||||||||
柚子皮 | — | 700 | 3h | 扑热息痛 | 1033±20 | 1.074 | — | Redlich-Peterson | qm,L=147mg·g-1 | Elovich | >0.987 | [ | |
甘蔗渣 | 蒸汽活化 | 500 | 1h | IBP | — | — | 2 | Langmuir和Freunlich | qm,L=11.9mg·g-1 | PSO | 0.997 | [ | |
磷酸活化 (浸泡24h) | 400 | 1h | IBP | — | — | 2 | Langmuir和Freunlich | qm,L=13.51mg·g-1 | PSO | 0.998 | |||
茶叶 | 蒸汽活化 | 700 | 2h | 咖啡因 | 576 | 0.1091 | 3 | Temkin | AT=2.399L·mg-1 | Elovich | 0.972 | [ | |
棉花 桔梗 | — | 350 | — | 磺胺类药物 (磷酸盐溶液) | 68.4 | 0.074 | — | Langmuir | qm=10μmol·g-1 | — | — | [ | |
— | 磺胺类药物 (尿液) | — | Langmuir | qm=10μmol·g-1 | — | — | |||||||
污泥 | 造纸厂初级 污泥 | — | 800 | 2.5h | 西酞普兰 | 209.12 | 0.13 | — | Langmuir | qm,L=(19.6±0.5)mg·g-1 | PSO | 0.9968 | [ |
造纸厂生物 污泥 | — | 800 | 10min | 西酞普兰 | 10.82 | 0.02 | — | Freunlich | KF=(0.165±0.008) mg·g-1(mg·L-1)-N | PSO | 0.9559 | ||
含铁纺织厂 污泥 | — | 400 | 4h | 氧氟沙星 | — | — | — | Langmuir | qm,L=19.74mg·g-1 | PSO | >0.982 | [ | |
造纸厂初级 污泥 | — | 800 | 2.5h | 甲磺酸三卡因 | 414 | 0.95 | — | Langmuir-Freunlich | DEM | 0.9998 | [ | ||
恩佐卡因 | — | Langmuir-Freunlich | qm,LF=(107±30)mg·g-1 | DEM | 0.9991 | ||||||||
2-苯氧乙醇 | — | Langmuir-Freunlich | qm,LF=(63±7)mg·g-1 | DEM | 0.9995 | ||||||||
造纸厂生物 污泥 | — | 800 | 2.5h | 甲磺酸三卡因 | 258 | 0.39 | — | Langmuir-Freunlich | qm,LF=(109±29)mg·g-1 | DEM | 0.9970 | ||
恩佐卡因 | — | Langmuir-Freunlich | qm,LF=(53±3)mg·g-1 | DEM | 0.9993 | ||||||||
2-苯氧乙醇 | — | Langmuir-Freunlich | qm,LF=(83±6)mg·g-1 | DEM | 0.9995 | ||||||||
其他固废 | 城市 垃圾 | 掺杂蒙脱石 | 450 | 4h | 环丙沙星 | 6.51 | — | 5 | Hills | qm,L=167.36mg·g-1 | PSO | 0.98 | [ |
— | 450 | 4h | 环丙沙星 | 4.33 | — | 5 | Hills | qm,L=122.16mg·g-1 | Elovich | 0.95 | |||
葡萄糖 | — | 900 | 3h | 扑热息痛 | 1292±31 | 0.704 | — | Redlich-Peterson | qm,L=286mg·g-1 | Elovich | >0.993 | [ | |
城市 垃圾 | 负载膨润土(混合2h) | 450 | 30min | 环丙沙星 | — | — | 6.5~7 | Hills | qm,L=286.604mg·g-1 | Elovich | 0.937 | [ | |
— | 450 | 30min | 环丙沙星 | — | — | 6.5~7 | Hills | qm,L=167.61mg·g-1 | PSO | 0.989 | |||
鳕鱼骨 | — | 1000 | 1h | 双氯芬酸 | 80.0 | — | — | Langmuir和Freunlich | qm,L=43.29mg·g-1 | Crank 方程 | 0.942 | [ | |
1h | 氟西汀 | — | Langmuir和Freunlich | qm,L=55.87mg·g-1 | Crank 方程 | 0.780 |
1 | TRAN N H, GIN K Y. Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant[J]. Science of the Total Environment, 2017, 599/600: 1503-1516. |
2 | SHI Zhongliang, LIU Fumei, YAO Shuhua. Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe(Ⅲ) oxide[J]. New Carbon Materials, 2011, 26(4): 299-306. |
3 | SOPHIA A C, LIMA E C. Removal of emerging contaminants from the environment by adsorption[J]. Ecotoxicology and Environmental Safety, 2018, 150: 1-17. |
4 | PALANSOORIYA Kumuduni Niroshika, YANG Yi, TSANG Yiu Fai, et al. Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(6): 549-611. |
5 | SIYAL A A, SHAMSUDDIN M R, LOW A, et al. A review on recent developments in the adsorption of surfactants from wastewater[J]. Journal of Environmental Management, 2020, 254: 109797. |
6 | CHOW C H, LEUNG K S Y. Removing acesulfame with the peroxone process: transformation products, pathways and toxicity[J]. Chemosphere, 2019, 221: 647-655. |
7 | KUMMERER Klaus. Emerging contaminants versus micro-pollutants[J]. CLEAN-Soil Air Water, 2011, 39(10): 889-890. |
8 | PHILIP J M, ARAVIND U K, ARAVINDAKUMAR C T. Emerging contaminants in Indian environmental matrices—A review[J]. Chemosphere, 2018, 190: 307-326. |
9 | FOCAZIO M J, KOLPIN D W, BARNES K K, et al. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—Ⅱ. Untreated drinking water sources[J]. Science of the Total Environment, 2008, 402(2-3): 201-216. |
10 | YOON Y, RYU J, OH J, et al. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea)[J]. Science of the Total Environment, 2010, 408(3): 636-643. |
11 | FERGUSON P J, BERNOT M J, DOLL J C, et al. Detection of pharmaceuticals and personal care products (PPCPs) in near-shore habitats of southern Lake Michigan[J]. Science of the Total Environment, 2013, 458/459/460: 187-196. |
12 | LIU J L, WONG M H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China[J]. Environment International, 2013, 59: 208-224. |
13 | MONDAL Sandip, AIKAT Kaustav, HALDER Gopinath. Ranitidine hydrochloride sorption onto superheated steam activated biochar derived from mung bean husk in fixed bed column[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 488-497. |
14 | TIJANI J O, FATOBA O O, BABAJIDE O, et al. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review[J]. Environmental Chemistry Letters, 2016, 14(1): 27-49. |
15 | NOGUERA-OVIEDO K, AGA D S. Lessons learned from more than two decades of research on emerging contaminants in the environment[J]. Journal of Hazardous Materials, 2016, 316: 242-251. |
16 | YI X, TRAN N H, YIN T, et al. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J]. Water Research, 2017, 121: 46-60. |
17 | KHRAISHEH Majeda, KIM Jongkyu, CAMPOS Luiza, et al. Removal of pharmaceutical and personal care products (PPCPs) pollutants from water by novel TiO2-coconut shell powder (TCNSP) composite[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3): 979-987. |
18 | SECONDES M F, NADDEO V, BELGIORNO V, et al. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation[J]. Journal of Hazardous Materials, 2014, 264: 342-349. |
19 | MIRZAEI Amir, CHEN Zhi, HAGHIGHAT Fariborz, et al. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review[J]. Sustainable Cities and Society, 2016, 27: 407-418. |
20 | JASIM S Y, IRABELLI A, YANG P, et al. Presence of pharmaceuticals and pesticides in Detroit river water and the effect of ozone on removal[J]. Ozone: Science & Engineering, 2006, 28(6): 415-423. |
21 | NADDEO Vincenzo, BELGIORNO Vincenzo, RICCO Daniele, et al. Degradation of diclofenac during sonolysis, ozonation and their simultaneous application[J]. Ultrasonics Sonochemistry, 2009, 16(6): 790-794. |
22 | ESPLUGAS S, BILA D M, KRAUSE L G, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents[J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. |
23 | DE A J R, OLIVEIRA M F, DA S M G C, et al. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3103-3127. |
24 | RAHMAN M F, YANFUL E K, JASIM S Y. Occurrences of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their removal from drinking water: challenges in the context of the developing world[J]. Desalination, 2009, 248(1/2/3): 578-585. |
25 | ASHIQ A, SARKAR B, ADASSOORIYA N, et al. Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media[J]. Chemosphere, 2019, 236: 124384. |
26 | SCHWARZENBACH R P, ESCHER B I, FENNER K, et al. The challenge of micropollutants in aquatic systems[J]. Science, 2006, 313(5790): 1072-1077. |
27 | 王志强, 张依章, 张远, 等. 太湖流域宜溧河酚类内分泌干扰物的空间分布及风险评价[J]. 环境科学研究, 2012, 25(12): 1351-1358. |
WANG Zhiqiang, ZHANG Yizhang, ZHANG Yuan, et al. Spatial distribution and risk assessment of typical EDCs in Yili River of Taihu Basin[J]. Research of Environmental Sciences, 2012, 25 (12): 1351-1358. | |
28 | 黄文平, 鲍轶凡, 胡霞林, 等. 黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价[J]. 环境化学, 2020, 39(6): 1488-1495. |
HUANG Wenping, BAO Yifan, HU Xialin, et al. Occurrence and ecological risk assessment of 31 endocrine disrupting chemicals in the water source of upstream Huangpu River[J]. Environmental Chemistry, 2020, 39(6):1488-1495. | |
29 | Zijl Magdalena Catherina VAN, ANECK-HAHN Natalie Hildegard, SWART Pieter, et al. Estrogenic activity, chemical levels and health risk assessment of municipal distribution point water from Pretoria and Cape Town, South Africa[J]. Chemosphere, 2017, 186: 305-313. |
30 | BAYEN Stéphane, ZHANG Hui, DESAI Malan Manish, et al. Occurrence and distribution of pharmaceutically active and endocrine disrupting compounds in Singapore’s marine environment: influence of hydrodynamics and physical-chemical properties[J]. Environmental Pollution, 2013, 182: 1-8. |
31 | 彭秋, 王卫中, 徐卫红. 重庆市畜禽粪便及菜田土壤中四环素类抗生素生态风险评价[J]. 环境科学, 2020, 41(10): 4757-4766. |
PENG Qiu, WANG Weizhong, XU Weihong. Ecological risk assessment of tetracycline antibiotics in livestock manure and vegetable soil of Chongqing[J]. Environmental Science, 2020, 41(10): 4757-4766. | |
32 | 张盼伟, 周怀东, 赵高峰, 等. 太湖表层沉积物中PPCPs的时空分布特征及潜在风险[J]. 环境科学, 2016, 37(9): 3348-3355. |
ZHANG Panwei, ZHOU Huaidong, ZHAO Gaofeng, et al. Spatial, temporal distribution characteristics and potential risk of PPCPs in surface sediments from Taihu Lake[J]. Environmental Science, 2016, 37(9): 3348-3355. | |
33 | 廖杰, 魏晓琴, 肖燕琴, 等. 莲花水库水体中抗生素污染特征及生态风险评价[J]. 环境科学, 2020, 41(9):4081-4087. |
LIAO Jie, WEI Xiaoqin, XIAO Yanqin, et al. Pollution characteristics and risk assessment of antibiotics in Lianhua Reservoir[J]. Environmental Science, 2020, 41(9): 4081-4087. | |
34 | 王娅南, 黄合田, 彭洁, 等. 贵州草海喀斯特高原湿地水环境中典型抗生素的分布特征[J]. 环境化学, 2020, 39(4):975-986. |
WANG Yanan, HUANG Hetian, PENG Jie, et al. Occurrence and distribution of typical antibiotics in the aquaticenvironment of the wetland karst plateau in Guizhou[J]. Environmental Chemistry, 2020, 39(4): 975-986. | |
35 | BILAL M, ADDEL M, RASHEED T, et al. Emerging contaminants of high concern and their enzyme-assisted biodegradation—A review[J]. Environment International, 2019, 124: 336-353. |
36 | KYZAS G Z, FU J, LAZARIDIS N K, et al. New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials[J]. Journal of Molecular Liquids, 2015, 209: 87-93. |
37 | REDDING A M, CANNON F S, SNYDER S A, et al. A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons[J]. Water Research, 2009, 43(15): 3849-3861. |
38 | KIM S, CHU K H, AL-HAMADANI Y A J, et al. Removal of contaminants of emerging concern by membranes in water and wastewater: a review[J]. Chemical Engineering Journal, 2018, 335: 896-914. |
39 | RACAR M, DOLAR D, KARADAKIĆ K, et al. Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants[J]. Science of the Total Environment, 2020, 722: 137959. |
40 | RAJESHA B J, Halali VISHAKA V, BALAKRISHNA Geetha R, et al. Effective composite membranes of cellulose acetate for removal of benzophenone-3[J]. Journal of Water Process Engineering, 2019, 30: 100419. |
41 | GUO Y, ZHAO E, WANG J, et al. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O3/H2O2 and electro-peroxone processes[J]. Journal of Hazardous Materials, 2020, 389: 121829. |
42 | LI A, WU Z, WANG T, et al. Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system in groundwater[J]. Journal of Hazardous Materials, 2018, 357: 207-216. |
43 | ALVARINO T, SYAREZ S, LEMA J M, et al. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors[J]. Journal of Hazardous Materials, 2014, 278: 506-513. |
44 | YU Zhuodong, ZHANG Ye, ZHANG Zhiming, et al. Enhancement of PPCPs removal by shaped microbial community of aerobic granular sludge under condition of low C/N ratio influent[J]. Journal of Hazardous Materials, 2020, 394: 122583. |
45 | Hyungseok NAM, CHOI Woongchul, GENUINO Divine A, et al. Development of rice straw activated carbon and its utilizations[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5221-5229. |
46 | WANG Jianlong, WANG Shizong. Preparation, modification and environmental application of biochar: a review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022. |
47 | KIM Sewoon, PARK Chang Min, JANG Am, et al. Removal of selected pharmaceuticals in an ultrafiltration-activated biochar hybrid system[J]. Journal of Membrane Science, 2019, 570/571: 77-84. |
48 | IM J K, BOATENG L K, FLORA J R V, et al. Enhanced ultrasonic degradation of acetaminophen and naproxen in the presence of powdered activated carbon and biochar adsorbents[J]. Separation and Purification Technology, 2014, 123: 96-105. |
49 | CALISTO V, FERREIRA C I, SANTOS S M, et al. Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water[J]. Bioresource Technology, 2014, 166: 335-344. |
50 | PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review[J]. Bioresource Technology, 2017, 246: 150-159. |
51 | ZHANG R, LI Y, WANG Z, et al. Biochar-activated peroxydisulfate as an effective process to eliminate pharmaceutical and metabolite in hydrolyzed urine[J]. Water Research, 2020, 177: 115809. |
52 | REGUYAL Febelyn, SARMAH Ajit K. Adsorption of sulfamethoxazole by magnetic biochar: effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol[J]. Science of the Total Environment, 2018, 628/629: 722-730. |
53 | TAHERAN M, NAGHDI M, BRAR S K, et al. Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar[J]. Science of the Total Environment, 2016, 571: 772-777. |
54 | LIN L, JIANG W, XU P. Comparative study on pharmaceuticals adsorption in reclaimed water desalination concentrate using biochar: impact of salts and organic matter[J]. Science of the Total Environment, 2017, 601/602: 857-864. |
55 | SOLANKI A, BOYER T H. Physical-chemical interactions between pharmaceuticals and biochar in synthetic and real urine[J]. Chemosphere, 2019, 218: 818-826. |
56 | HEO J, YOON Y, LEE G, et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4-biochar composite[J]. Bioresource Technology, 2019, 281: 179-187. |
57 | SHAN D, DENG S, ZHAO T, et al. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling[J]. Journal of Hazardous Materials, 2016, 305: 156-163. |
58 | TRAN H N, TOMUL F, THI H H N, et al. Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism[J]. Journal of Hazardous Materials, 2020, 394: 122255. |
59 | CHAKRABORTY Prasenjit, SHOW Sumona, BANERJEE Soumya, et al. Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: performance evaluation and cost estimation[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5287-5300. |
60 | KEERTHANAN S, BHATNAGAR A, MAHATANTILA K, et al. Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media[J]. Environmental Technology & Innovation, 2020, 19: 100847. |
61 | SUN P, LI Y, MENG T, et al. Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine[J]. Water Research, 2018, 147: 91-100. |
62 | FEEREIRA Catarina I A, Vânia CALISTO, OTERO Marta, et al. Comparative adsorption evaluation of biochars from paper mill sludge with commercial activated carbon for the removal of fish anaesthetics from water in recirculating aquaculture systems[J]. Aquacultural Engineering, 2016, 74: 76-83. |
63 | ASHIQ A, ADASSOORIYA N M, SARKAR B, et al. Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media[J]. Journal of Environmental Management, 2019, 236: 428-435. |
64 | PICCIRILLO C, MOREIRA I S, NOVAIS R M, et al. Biphasic apatite-carbon materials derived from pyrolysed fish bones for effective adsorption of persistent pollutants and heavy metals[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4884-4894. |
65 | ZHU Yao, YI Baojun, HU Hongyun, et al. The relationship of structure and organic matter adsorption characteristics by magnetic cattle manure biochar prepared at different pyrolysis temperatures[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104112. |
66 | YAO Hong, LU Jian, WU Jun, et al. Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source[J]. Water, Air & Soil Pollution, 2012, 224(1): 1-9. |
67 | SINGH V, SRIVASTAVA V C. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant[J]. Environmental Pollution, 2020, 259: 113822. |
68 | CHEN Long, JI Tuo, MU Liwen, et al. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon[J]. Journal of Environmental Management, 2017, 196: 168-177. |
69 | XU Duo, LI Zhaoxin, WANG Peijing, et al. Aquatic plant-derived biochars produced in different pyrolytic conditions: spectroscopic studies and adsorption behavior of diclofenac sodium in water media[J]. Sustainable Chemistry and Pharmacy, 2020, 17: 100275. |
70 | YAO Y, GAO B, CHEN H, et al. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation[J]. Journal of Hazardous Materials, 2012, 209/210: 408-413. |
71 | WEBER Kathrin, QUICKER Peter. Properties of biochar[J]. Fuel, 2018, 217: 240-261. |
72 | CARRALES-ALVARADO D H, RODRÍGUEZ-RAMOS I, LEYVA-RAMOS R, et al. Effect of surface area and physical-chemical properties of graphite and graphene-based materials on their adsorption capacity towards metronidazole and trimethoprim antibiotics in aqueous solution[J]. Chemical Engineering Journal, 2020, 402: 126155. |
73 | YU Jiangfang, TANG Lin, PANG Ya, et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism[J]. Chemical Engineering Journal, 2019, 364: 146-159. |
74 | AHMED M B, ZHOU J L, NGE H H, et al. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater[J]. Bioresource Technology, 2016, 214: 836-851. |
75 | REGUYAL F, SARMAH A K. Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar[J]. Environmental Pollution, 2018, 233: 510-519. |
76 | LIU Y, BLOWES D W, PTACEK C J, et al. Removal of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar[J]. Science of the Total Environment, 2019, 691: 165-177. |
77 | JUNG C, PARK J, LIM K H, et al. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars[J]. Journal of Hazardous Materials, 2013, 263Pt 2: 702-710. |
78 | CHEN L, CHENG P, YE L, et al. Biological performance and fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater[J]. Bioresource Technology, 2020, 302: 122805. |
79 | ZHANG Xiaoying, SUN Peizhe, WEI Kajia, et al. Enhanced H2O2 activation and sulfamethoxazole degradation by Fe-impregnated biochar[J]. Chemical Engineering Journal, 2020, 385: 123921. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[10] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[11] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |