1 | CHU K, WANG X H, LI Y B, et al. Thermal properties of graphene/metal composites with aligned graphene[J]. Materials & Design, 2018, 140: 85-94. | 2 | 王欢欢, 胡祥龙. 两亲性高分子功能化氧化石墨烯的制备与生物相容性评价[J]. 激光生物学报, 2017, 26(6): 540-543. | 2 | WANG Huanhuan, HU Xianglong. Fabrication and biocompatibility evaluation of amphiphilic polymer-decorated graphene oxide[J]. Journal of Laser Biology, 2017, 26(6): 540-543. | 3 | LI L, ZENG Z, ZOU H W, et al. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface[J]. Thermochimica Acta, 2015, 614: 76-84. | 4 | 邓尧, 黄肖容, 邬晓龄. 氧化石墨烯复合材料的研究进展[J]. 材料导报, 2012, 26(8): 84-87. | 4 | DENG Yao, HUANG Xiaorong, WU Xiaoling. Review on graphene oxide composites[J]. Materials Guide, 2012, 26(8): 84-87. | 5 | BRODIE B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London, 1859, 149(1): 249-259. | 6 | KIM J, COTE L J, HUANG J X. Two dimensional soft material: new faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1356-1364. | 7 | 孟蝶. 氨基功能化氧化石墨烯对PVDF超滤膜表面改性的研究[D]. 上海: 东华大学, 2015. | 7 | MENG Die. Study on the modification of PVDF ultrafiltration membrane by grafting amino-functionalized graphene oxide[D]. Shanghai: Donghua University, 2015. | 8 | HOFMANN U, HOLST R. über die s?urenatur und die methylierung von graphitoxyd[J]. Berichte Der Deutschen Chemischen Gesellschaft, 2006, 72(4): 754-771. | 9 | RUESS G. über das graphitoxyhydroxyd (graphitoxyd)[J]. Monatshefte Fuer Chemie, 1947, 76(3): 381-417. | 10 | SCHOLZ W, BOEHM H P. Untersuchungen am graphitoxid. Ⅵ. Betrachtungen betrachtungen zur struktur des graphitoxids. z anorg allg chem[J]. Zeitschrift Für Anorganische Chemie, 1969, 369(3/4/5/6): 327-340. | 11 | NAKAJIMA T, MABUCHI A, HAGIWARA R. A new structure model of graphite oxide[J]. Carbon, 1988, 26(3): 357-361. | 12 | LEE D W, DELOS SANTOS V L, SEO J W,et al. The structure of graphite oxide: investigation of its surface chemical groups[J].The Journal of Physical Chemistry B, 2010, 114(17): 5723-5728. | 13 | MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. | 14 | YU H T, ZHANG B W, BULIN C K, et al. High-efficient synthesis of graphene oxide based on improved hummers method[J]. Scientific Reports, 2016, 6: 36143. | 15 | ZHONG Y L, TIAN Z M, SIMON G P, et al. Scalable production of graphene via wet chemistry: progress and challenges[J]. Material Today, 2015, 18(2): 73-78. | 16 | LEE X J, HIEW B Y Z, LAI K C, et al. Review on graphene and its derivatives: synthesis methods and potential industrial implementation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 98: 163-180. | 17 | YOON G, SEO D H, KU K, et al. Factors affecting the exfoliation of graphite intercalation compounds for graphene synthesis[J]. Chemistry of Materials, 2015, 27(6): 2067-2073. | 18 | 孙寒雪. 基于氧化石墨烯的高吸水纳米复合材料制备与性能研究[D]. 兰州: 兰州理工大学, 2012. | 18 | SUN Hanxue. Study on properties investigation of MC nylon reinforced by modified graphene oxide[D]. Lanzhou: Lanzhou University of Technology, 2012. | 19 | 刘文骞. 氧化石墨烯的制备及其对铸型尼龙的改性研究[D]. 天津: 河北工业大学, 2013. | 19 | LIU Wenqian. Synthesis and preparation of graphene oxide and its modification on the castnylon[D]. Tianjin: Hebei University of Technology, 2013. | 20 | 邹正光, 俞惠江, 龙飞, 等. 超声辅助Hummers法制备氧化石墨烯[J]. 无机化学学报, 2011(9): 1753-1757. | 20 | ZOU Zhengguang, YU Huijiang, LONG Fei, et al. Preparation of graphene oxide by ultrasound-assisted Hummers method[J]. Journal of Inorganic Chemistry, 2011(9): 1753-1757. | 21 | KHAN M S, SHAKOOR A, KHAN G T, et al. A study of stable graphene oxide dispersions in various solvents[J]. The Chemical Society of Pakistan, 2015, 37(1): 62-67. | 22 | AMIRI A, NARAGHI M, AHMADI G, et al. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges[J]. Flat Chem., 2018, 8: 40-71. | 23 | PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224. | 24 | PAREDES J I, VILLAR-RODIL S, MARTINEZ-ALONSO A, et al. Graphene oxide dispersions in organic solvents[J]. Langmuir, 2008, 24(19): 10560-10564. | 25 | JUNG I, FIELD D A, CLARK N J, et al. Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption[J]. The Journal of Physical Chemistry C, 2009, 113(43): 18480-18486. | 26 | MCALLISTER M J, LI J L, ADAMXON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials, 2007, 19(18): 4396-4404. | 27 | 杨云雪. 氧化石墨的制备及其热剥离产物的性能研究[D]. 天津: 天津大学, 2013. | 27 | YANG Yunxue. Research on preparation of graphite oxide andproperties of its thermal expansion product[D]. Tianjin: Tianjin University, 2013. | 28 | YAN Z, PENG Z W, SUN Z Z, et al. Growth of bilayer graphene on insulating substrates[J]. ACS Nano, 2011, 5(10): 8187-8192. | 29 | 卓其奇. 石墨烯及其金属复合物的合成与应用[D]. 苏州: 苏州大学, 2013. | 29 | ZHUO Qiqi. Facile synthesis and application of graphene and its metal composite[D]. Suzhou: Suzhou University, 2013. | 30 | YANG S, LOHE M R, MüLLEN K, et al. New-generation graphene from electrochemical approaches: production and applications[J]. Advanced Materials, 2016, 28(29): 6213-6221. | 31 | YANG S, BRüLLER S, WU Z S, et al. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene[J]. Journal of the American Chemical Society, 2015, 137(43): 13927-13932. | 32 | SINGH V V, GUPTA G BATRA A, et al. Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application[J]. Advanced Functional Materials, 2012, 22(11): 2352-2362. | 33 | ELVIA T S, DANIEL B U, PEDRO A M A, et al. Platinum nanoparticles supported on electrochemically oxidized and exfoliated graphite for the oxygen reduction reaction[J]. Electrochimica Acta, 2019, 298: 172-185. | 34 | TIAN S Y, YANG S W, HUANG T, et al. One-step fast electrochemical fabrication of water-dispersible graphene[J]. Carbon, 2017, 111: 617-621. | 35 | 陈骥. 氧化石墨烯的制备及结构控制[D]. 北京: 清华大学, 2016. | 35 | CHEN Ji. Synthesis and structural control of graphene oxide[D]. Beijing: Tsinghua University, 2016. | 36 | 毕祺. 不同氧化程度与缺陷度氧化石墨烯制备及其吸附Cu2+研究[D]. 广州: 华南理工大学, 2015. | 36 | Bi Qi. Adsorption of Cu2+ by graphene oxide with different degrees of oxidation and defects[D]. Guangzhou: South China University of Technology, 2015. | 37 | 朱碧馨. 石墨的氧化及剥离新技术研究[D]. 北京: 北京化工大学, 2018. | 37 | ZHU Bixin. Study of new technology on graphite oxidation and exfoliation of graphite[D]. Beijing: Beijing University of Chemical Technology, 2018. | 38 | HU X B, YU Y, HOU W M, et al. Effects of particle size and pH value on the hydrophilicity of graphene oxide[J]. Applied Surface Science, 2013, 273: 118-121. | 39 | KIM J, COTE L J, KIM F, et al. Graphene oxide sheets at interfaces[J]. Journal of the American Chemical Society, 2010, 132(23): 8180-8186. | 40 | DREYER D R, TODD A D, BIELAWSKI C W. Harnessing the chemistry of graphene oxide[J]. Chemical Society Reviews, 2014, 43(15): 5288-5301. | 41 | CHABOT V, HIGGINS D, YU A, et al. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment[J]. Energy & Environmental Science, 2014, 7(5): 1564-1596. | 42 | RAFAEL B G, RODRIGUEZ R, áLVARO M, et al. Photochemistry of covalently functionalized graphene oxide with phenothiazinyl units[J]. Carbon, 2014, 74: 113-119. | 43 | SZABò T, TOMBáCZ E, ILLéS E, et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon, 2006, 44(3): 537-545. | 44 | BOEHM H P, CLAUSS A, FISCHER G, et al. Surface properties of extremely thin graphite lamellae[C]//Proceedings of the Fifth Conference on Carbon, 1962. | 45 | DREYER D R, JIA H P, BIELAWSKI C W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions[J]. Angewandte Chemie International Edition, 2010, 49(38): 6813-6816. | 46 | PYUN J. Graphene oxide as catalyst: application of carbon materials beyond nanotechnology[J]. Angewandte Chemie International Edition, 2011, 50(1): 46-48. | 47 | SHAIKH M, SINGH S K, KHILARI S, et al. Graphene oxidee as a sustainable metal and solvent free catalyst for dehydration of fructose to 5-HMF: a new and green protocol[J]. Catalysis Communications, 2018, 106: 64-67. | 48 | ABDI G, ALIZADEH A, KHODAEI M M. Highly carboxyl-decorated graphene oxide sheets as metal-free catalytic system for chemoselective oxidation of sulfides to sulfones[J]. Materials Chemistry and Physics, 2017, 201: 323-330. | 49 | DREYER D R, JARVIS K A, FERREIRA P J, et al. Graphene oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites[J]. Polymer Chemistry, 2012, 3(3): 757-766. | 50 | DIZAJI A K, MORTAHEB H R, MOKHTARANI B. Complete oxidative desulfurization using graphene oxide-based phosphomolybdic acid catalyst: process optimization by two phase mass balance approach[J]. Chemical Engineering Journal, 2018, 335: 362-372. | 51 | 郑卫国. 基于氧化石墨烯的多相催化剂设计及其催化氧化性能研究[D]. 长沙: 湖南师范大学, 2015. | 51 | ZHENG Weiguo. The design and preparation of different catalysts based on graphene oxide for catalytic oxidative reaction[D]. Changsha: Hunan Normal University, 2015. | 52 | MASTER-FARAHANI M, MODARRES M. Heterogenized peroxopolyoxotungstate catalyst on the surface of clicked magnetite-graphene oxide nanocomposite: magnetically recoverable epoxidation catalyst[J]. Applied Organometallic Chemistry, 2018, 32(3): e4142. | 53 | DAS R S, WARKHADE S K, KUMAR A, et al. Graphene oxide-based zirconium oxide nanocomposite for enhanced visible light-driven photocatalytic activity[J]. Research on Chemical Intermediates, 2019, 45(4): 1689-1705. | 54 | 冯淑湘, 刘侠, 张茸茸. 染料废水处理方法研究进展[J]. 榆林学院学报, 2014(6): 21-25. | 54 | FENG Shuxiang, LIU Xia, ZHANG Rongrong. The research development of dye wastewater treatment[J]. Journal of Yulin University, 2014(6): 21-25. | 55 | LI Y H, ZHANG P, DU Q J, et al. Adsorption of fluoride from aqueous solution by graphene[J]. Journal of Colloid & Interface Science, 2011, 363(1): 348-354. | 56 | MISHRA A, SUNDARA R. Functionalized graphene sheets for arsenic removal and desalination of sea water[J]. Desalination, 2011, 282: 39-45. | 57 | DENG X J, LYU L, LI H W, et al. The adsorption properties of Pb(Ⅱ) and Cd(Ⅱ) on functionalized graphene prepared by electrolysis method[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 923-930. | 58 | 杨秀贞. 氧化石墨烯及其四氧化三铁复合物吸附水中锑(Ⅲ)的研究[D]. 长沙: 湖南大学, 2015. | 58 | YANG Xiuzhen. Study on adsorption of antimony (Ⅲ) from aqueous solution using graphene oxide and it’s magnetite composites[D]. Changsha: Hunan University, 2015. | 59 | WANG P P, LI J, CHEN L X, et al. A novel ex-situ charge interaction strategy for the fabrication of graphene oxide/organic functionalized silica nanoparticles composites and application in Cd(Ⅱ) adsorption[J]. Journal of Sol-Gel Science and Technology, 2019, 89(3): 641-650. | 60 | WHITE R L, WHITE C M, TURGUT H, et al. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 18-28. | 61 | XIN Q P, WU H, JIANG Z Y, et al. SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2014, 467: 23-35. | 62 | LI X Q, MA L, ZHANG H Y, et al. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation[J]. Journal of Membrane Science, 2015, 479: 1-10. | 63 | ISMAIL A F, GOH P, SANIP S M, et al. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Separation & Purification Technology, 2010, 70(1): 12-26. | 64 | LI X Q, CHENG Y D, ZHANG H Y, et al. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5528-5537. | 65 | DONG G Y, HOU J W, WANG J, et al. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 860-868. | 66 | LIN R, GE L, HOU L, et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5609-5618. | 67 | SARFRAZ M, BA-SHAMMAKH M. Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas[J]. Journal of Membrane Science, 2016, 514: 35-43. | 68 | JIA M M, FENG Y, QIU J H, et al. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation[J]. Separation and Purification Technology. 2019, 213: 63-69. | 69 | YANG K, DAI Y, ZHENG W J, et al. ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranes[J]. Separation and Purification Technology, 2019, 214: 87-94. | 70 | GOLPOUR M, PAKIZEH M. Preparation and characterization of new PA-MOF/PPSU-GO membrane for the separation of KHI from water[J]. Chemical Engineering Journal, 2018, 345: 221-232. | 71 | 魏秀珍, 洪家亮, 鲍晓燕, 等. 氧化石墨烯-聚酰胺(GO-PA)复合纳滤膜的制备及应用[J]. 浙江工业大学学报, 2017, 45(6): 660-665. | 71 | WEI Xiuzhen, HONG Jialiang, BAO Xiaoyan, et al. Preparation and application of graphene oxide-polyamide (GO-PA) composite nanofiltration membranes[J]. Journal of Zhejiang University of Technology, 2017, 45(6): 660-665. | 72 | SUN J W, BI H C, SU S, et al. One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion[J]. Journals & Books, 2018, 533: 131-138. | 73 | 孙俊芬, 郑龙, 陈龙. 聚氨酯/氨基化氧化石墨烯杂化膜的制备及性能[J]. 东华大学学报(自然科学版), 2019, 45(2): 1-7. | 73 | SUN Junfen, ZHENG Long, CHEN Long. Preparation and performance of polyurethane/aminated graphene oxide hybrid membrance[J]. Journal of Donghua University (Natural Science Edition), 2019, 45(2): 1-7. | 74 | LIU F, CHOI J Y, SEO T S. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer[J]. Biosensors and Bioelectronics, 2010, 25(10): 2361-2365. | 75 | WANG H L, HAO Q L, YANG X J, et al. Effect of graphene oxide on the properties of its composite with polyaniline[J]. ACS Applied Materials and Interfaces, 2010, 2(3): 821-828. | 76 | 王恩亮, 董余兵, 傅雅琴. 氧化石墨烯增强水性环氧形状记忆复合材料的制备及其性能[J].浙江理工大学学报(自然科学版), 2019, 41(2): 141-147. | 76 | WANG Enliang, DONG Yubing, FU Yaqin. Fabrication and properties of graphene oxide/water-borne epoxy shape memory composites[J]. Journal of Zhejiang University of Science and Technology (Natural Science Edition), 2019, 41(2): 141-147. | 77 | 陈贵靖, 邱孝涛, 邱宇涵, 等. 电化学沉积制备氧化石墨烯/聚吡咯复合材料及其用于超级电容器的研究[J]. 化学研究与应用, 2019, 31(1): 101-106. | 77 | CHEN Guijing, QIU Xiaotao, QIU Yuhan, et al. Study on the preparation of graphene oxide/polypyrrole composite for supercapacitor application by electrochemical deposition[J]. Chemical Research and Application, 2019, 31(1): 101-106. | 78 | 魏文硕, 宋朝霞, 曾森, 等. NiCo2O4/氧化石墨烯复合材料制备与电化学性能研究[J]. 材料科学与工艺, 2018, 26(5): 47-53. | 78 | WEI Wenshuo, SONG Zhaoxia, ZENG Sen, et al. Preparation and electrochemical properties of sea urchin-like NiCo2O4/GO composites[J]. Materials Science and Technology, 2018, 26(5): 47-53. | 79 | 韩永芹, 郭义, 申明霞, 等. 片状聚吡咯/氧化石墨烯复合材料的制备及电化学性能[J]. 功能材料, 2015, 46(4): 4046-4050. | 79 | HAN Yongqin, GUO Yi, SHEN Mingxia, et al. Preparation and electrochemical performances of mciro-sheet polypyrrole/graphene oxide composite[J]. Functional Materials, 2015, 46(4): 4046-4050. | 80 | BIANCO A. Graphene: safe or toxic? The two faces of the medal[J]. Angewandte Chemie International Edition, 2013, 52(19): 4986-4997. | 81 | WANG Y W, FU Y Y, PENG Q, et al. Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging[J]. Journal of Materials Chemistry B, 2013(42): 5762-5767. | 82 | SHIM G, KIM M G, PARK J Y, et al. Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs[J]. Advanced Drug Delivery Reviews, 2016, 105: 205-227. | 83 | ZHANG X, LUO L, LI L, et al. Trimodal synergistic antitumor drug delivery system based on graphene oxide[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2019, 15(1): 142-152. | 84 | KARKI N, TIWARI H, PAL M, et al. Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: a comparative study[J]. Colloids Surf. B: Biointerfaces, 2018, 169: 265-272. | 85 | RAZA M A, REHMAN Z U, FAIZAN A G. Corrosion study of silane-functionalized graphene oxide coatings on copper[J]. Thin Solid Films, 2018, 663: 93-99. | 86 | YU ZX, DI H H, MA Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings[J]. Surface and Coatings Technology, 2015, 276: 471-478. | 87 | YU Z X, LV L, MA Y, et al. Covalent modification of graphene oxide by metronidazole for reinforced anti-corrosion properties of epoxy coatings[J]. RSC Advances, 2016, 6(22): 18217-18226. | 88 | HONG W G, KIM B H, LEE S M, et al. Agent-free synthesis of graphene oxide/transition metal oxide composites and its application for hydrogen storage[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7594-7599. | 89 | WANG L, LEE K, Sun Y Y, et al. Graphene oxide as an ideal substrate for hydrogen storage[J]. ACS Nano, 2009, 3(10): 2995-3000. | 90 | TYLIANAKIS E, PSOFOGIANNAKIS G M, FROUDAKIS G E. Li-doped pillared graphene oxide: a graphene-based nanostructured material for hydrogen storage[J]. Journal of Physical Chemistry Letters, 2010, 1(16): 2459-2464. |
|