1 | SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310. | 2 | AZAMAT J, KHATAEE A, JOO S W. Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure[J]. Chemical Engineering Science, 2015, 127: 285-292. | 3 | FRITZMANN C, LOWENBERG J, WINTGENS T, et al. State-of-the-art of reverse osmosis desalination[J]. Desalination, 2007, 216(1/2/3): 1-76. | 4 | VERMA A K, DASH R R, BHUNIA P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. J. Environ. Manage, 2012, 93(1): 154-168. | 5 | WILDERER P A. Treatise on water science[M]. Oxford: Academic Press, 2011: 301-335. | 6 | GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348. | 7 | LEE K P, ARNOT T C, MATTIA D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential[J]. Journal of Membrane Science, 2011, 370(1/2): 1-22. | 8 | SAZANOV Y N. Applied significance of polyimides[J]. Applied Significance of Polyimides, 2001, 74: 1253-1269. | 9 | YAN H, MIAO X P, XU J, et al. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes[J]. Journal of Membrane Science, 2015, 475: 504-510. | 10 | LEE K P, ZHENG J M, BARGEMAN G, et al. pH stable thin film composite polyamine nanofiltration membranes by interfacial polymerisation[J]. Journal of Membrane Science, 2015, 478: 75-84. | 11 | CHOWDHURY M R, STEFFES J,HUEY B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361(6403): 682-685. | 12 | RIDGWAY H F, ORBELL J, GRAY S. Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects[J]. Journal of Membrane Science, 2017, 524: 436-448. | 13 | SONG X X, GAN B W, YANG Z, et al. Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes[J]. Journal of Membrane Science, 2019, 582: 342-349. | 14 | LIN L, LOPEZ R, RAMON G Z, et al. Investigating the void structure of the polyamide active layers of thin-film composite membranes[J]. Journal of Membrane Science, 2016, 497: 365-376. | 15 | MA X H, YAO Z K, YANG Z, et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2): 123-130. | 16 | KONG C L, KANEZASHI M, YAMOMOTO T, et al. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination[J]. Journal of Membrane Science, 2010, 362 (1): 76-80. | 17 | YAN W T, SHI M Q, WANG Z, et al. Confined growth of skin layer for high performance reverse osmosis membrane[J]. Journal of Membrane Science, 2019, 585: 208-217. | 18 | KARAN S, JIANG Z W, LIVINGSTON A G. Sub-10nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348 (6241): 1347-1351. | 19 | JIANG Z W, KARAN S, LIVINGSTON A G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis[J]. Advanced Materials, 2018, 30 (15): 1705973. | 20 | SONG X X, QI S R, TANG C Y. Ultra-thin, multi-layered polyamide membranes: synthesis and characterization[J]. Journal of Membrane Science, 2017, 540: 10-18. | 21 | CHAI G Y, KRANTZ W B. Formation and characterization of polyamide membranes via interfacial polymerization[J]. Journal Membrane Science, 1994, 93(2): 175-192. | 22 | FREGER V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization[J]. Langmuir, 2003, 19: 4791-4797. | 23 | HOU J J, JIANG M H Z, HE X, et al. Sub-10nm polyamide nanofiltration membrane for molecular separation[J]. Chemistry: An Asian Journal, 2019. . | 24 | YAO Z K, YANG Z, GUO H, et al. Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains[J]. Journal of Colloid and Interface Science, 2019, 552: 418-425. | 25 | QIAN H D, LI S H, ZHENG J F, et al. Ultrathin films of organic networks as nanofiltration membranes via solution-based molecular layer deposition[J]. Langmuir, 2012, 28: 17803-17810. | 26 | GU J E, LEE S, STAFFORD C M, et al. Molecular layer-by-layer assembled thin-film composite membranes for water desalination[J]. Adv. Mater., 2013, 25(34): 4778-4782. | 27 | CHAN E P, LEE J H,CHUNG J Y, et al. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films[J]. Rev. Sci. Instrum., 2012, 83(11): 114102. | 28 | JOHNSON P M, YOON J,KELLY J Y, et al. Molecular layer-by-layer deposition of highly crosslinked polyamide films[J]. Journal of Polymer Science B: Polymer Physics, 2012, 50(3): 168-173. | 29 | SHAN L L, GU J H, FAN H W, et al. Microphase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane[J]. ACS Applied Materials & Interfaces, 2017, 9: 44820-44827. | 30 | MA X H, YANG Z,YAO Z K, et al. Interfacial polymerization with electrosprayed microdroplets: toward controllable and ultrathin polyamide membranes[J]. Environmental Science & Technology Letters, 2018, 5: 117-122. | 31 | MA X H, GUO H, YANG Z, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. Journal of Membrane Science, 2019, 570/571: 139-145. | 32 | LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. | 33 | WU X L, LI Y F, CUI X L, et al. Adsorption-assisted interfacial polymerization toward ultrathin active layers for ultrafast organic permeation[J]. ACS Applied Materials & Interfaces, 2018, 10: 10445-10453. | 34 | PARK S J, KWON S J, KWON H E, et al. Aromatic solvent-assisted interfacial polymerization to prepare high performance thin film composite reverse osmosis membranes based on hydrophilic supports[J]. Polymer, 2018, 144: 159-167. | 35 | LIU S H, WU C R, HUNG W S, et al. One-step constructed ultrathin Janus polyamide nanofilms with opposite charges for highly efficient nanofiltration[J]. Journal of Materials Chemistry, 2017, 5(44): 22988-22996. | 36 | GHOSH A K, HOEK E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes[J]. Journal of Membrane Science, 2009, 336(1/2): 140-148. | 37 | SHI M Q, WANG Z, ZHAO S, et al. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support[J]. Journal of Membrane Science, 2018, 555: 157-168. | 38 | GAO S J, ZHU Y Z, GONG Y Q, et al. Ultrathin polyamide nano?ltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving[J]. ACS Nano, 2019, 13: 5278-5290. | 39 | SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6: 652-655. | 40 | HAN Y, XU Z, GAO C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29): 3693-3700. | 41 | RANKIN D J, BOCQUET L, HUANG D M. Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane[J]. The Journal of Chemical Physics, 2019,151(4): 044705. | 42 | MORELOS-GOMEZ A, CRUZ-SILVA R, MURAMATSU H, et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes[J]. Nature Nanotechnology, 2017,12: 1083-1088. | 43 | LI X Q, XU W C, TANG M Y, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a con?ned 2D water path[J]. PNAS, 2016, 113(49): 13953-13958. | 44 | HEIKKIL? P, TAIPALE A, LEHTIM?KI M, et al. Electrospinning of polyamides with different chain compositions for filtration application[J]. Polymer Engineering & Science, 2008, 48(6): 1168-1176. | 45 | XU W W L, FANG C, ZHOU F L, et al. Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification[J]. Nano Lett., 2017, 17: 2928-2933. | 46 | SHI J L, WU W F, XIA Y, et al. Confined interfacial polymerization of polyamide-graphene oxide composite membranes for water desalination[J]. Desalination, 2018, 441: 77-86. | 47 | ZHAO W, LIU H Y, MENG N, et al. Graphene oxide incorporated thin film nanocomposite membrane at low concentration monomers[J]. Journal of Membrane Science, 2018, 565: 380-389. | 48 | GRAVELLE S, JOLY L, DETCHEVERRY F, et al. Optimizing water permeability through the hourglass shape of aquaporins[J]. PNAS, 2013, 110 (41): 16367-16372. | 49 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat. Nanotechnology, 2011, 6: 147-150. | 50 | HEIRANIAN M, FARIMANI A B, ALURU N R. Water desalination with a single-layer MoS2 nanopore[J]. Nature Commun., 2015, 6: 8616. | 51 | YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16: 1198-1202. | 52 | SUN L W, YING Y L, HUANG Z G, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes[J]. ACS Nano, 2014, 8(6): 6304-6311. | 53 | LAI Z, TSAPATSIS M, NICOLICH J P. Siliceous ZSM-5 membranes by second ary growth of b-oriented seed layers[J]. Adv. Funct. Mater., 2004, 14: 716-729. | 54 | MURAD S M, LIN J C. Using thin zeolite membranes and external electric ?elds to separate supercritical aqueous electrolyte solutions[J]. Ind. Eng. Chem. Res., 2002, 41(5): 1076-1083. | 55 | LI L X, LIU N, MCPHERSON B, et al. In?uence of counter ions on the reverse osmosis through MFI zeolite membranes: implications for produced water desalination[J]. Desalination, 2008, 228(1/2/3): 217-225. | 56 | CHOI W, GU J E, PARK S H, et al. Tailor-made polyamide membranes for water desalination[J]. ACS Nano, 2015, 9(1): 345-355. |
|