1 | MAO L, LI Y, CHI C, et al. Conjugated polyfluorene imidazolium ionic liquids intercalated reduced graphene oxide for high performance supercapacitor electrodes[J]. Nano Energy, 2014, 6(10): 119-128. | 2 | WANG G, WANG H, LU X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials, 2014, 26(17): 2676-2682. | 3 | WESTOVER A S, TTAN J W, BERNATH S, et al. A multifunctional load-bearing solid-state supercapacitor[J]. Nano Letters, 2014, 14(6): 3197-3202. | 4 | BAI X, HU X, ZHOU S, et al. In situ polymerization and characterization of grafted poly (3, 4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances[J]. Electrochimica Acta, 2013, 87(1): 394-400. | 5 | CHEN H, GUO Y C, WANG F, et al. An activated carbon derived from tobacco waste for use as a supercapacitor electrode material[J]. New Carbon Materials, 2017, 32(6): 592-599. | 6 | LEE K S, MI S P, KIM J D. Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 533: 323-329. | 7 | JIN H, WANG X, GU Z, et al. A facile method for preparing nitrogen-doped graphene and its application in supercapacitors[J]. Journal of Power Sources, 2015, 273: 1156-1162. | 8 | SHARMA R, MANZIE C, BESSEDE M, et al. Conventional, hybrid and electric vehicles for Australian driving conditions-Part 1: Technical and financial analysis[J]. Transportation Research Part C, 2012, 25(8): 238-249. | 9 | SUN K, LENG C Y, JIANG J C, et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance[J]. New Carbon Materials, 2017, 32(5): 451-459. | 10 | DOBELE G, VOLPERTS A, ZHURINSH A, et al. Wood based activated carbons for supercapacitor electrodes with sulfuric acid electrolyte[J]. New Carbon Materials, 2017, 32(4): 319-326. | 11 | SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. | 12 | LI B, TANG D M, KONG D, et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3(7471): 2975. | 13 | BARZEGAR F, BELLO A, DANGBEGNON J K, et al. Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability[J]. Applied Energy, 2017, 207: 417-426. | 14 | FUJISHIGE M, YOSHIDA I, TOYA Y, et al. Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 1801-1808. | 15 | LIU H J, CUI W J, JIN L H, et al. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors[J]. Journal of Materials Chemistry, 2009, 19(22): 3661-3667. | 16 | XIAO Y, LONG C, ZHENG M T, et al. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors[J]. Chinese Chemical Letters, 2014, 25 (6): 865-868. | 17 | KLESZYK P, RATAJCZAK P, SKOWRON P, et al. Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors[J]. Carbon, 2015, 81: 148-157. | 18 | ABIOYE A M, ANI F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review[J]. Renewable & Sustainable Energy Reviews, 2015 (52): 1282-1293. | 19 | FARMA R, DERAMAN M, AWITDRUS A, et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J]. Bioresource Technology,2013, 132(3): 254-261. | 20 | WANG G, LING Y, QIAN F, et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes[J]. Journal of Power Sources, 2011, 196(11): 5209-5214. | 21 | KANG D M, LIU Q L, GU J J, et al. “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano, 2015, 9(11): 11225-11233. | 22 | JUREWICZ K, BABEL K. Efficient capacitor materials from active carbons based on coconut shell/melamine precursors[J]. Energy & Fuels, 2010, 24(6): 3429-3435. | 23 | BALATHANIGAIMANI M S, SHIM W G, LEE M J, et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electrochemistry Communications, 2008, 10(6): 868-871. | 24 | LI X L, HAN C L, CHEN X Y, et al. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes[J]. Microporous & Mesoporous Materials, 2010, 131(1): 303-309. | 25 | ZHAO S, WANG C Y, CHEN M M, et al. Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. Journal of Physics & Chemistry of Solids, 2009, 70(9): 1256-1260. | 26 | CHEN H B, WANG H B, YANG L F, et al. High specific surface area rice hull based porous carbon prepared for EDLCs[J]. International Journal of Electrochemical Science, 2012, 7(6): 4889-4897. | 27 | LI X, XING W, ZHUO S P, et al. Preparation of capacitor’s electrode from sunflower seed shell[J]. Bioresource Technology, 2011, 102(2): 1118-1123. | 28 | QIU Y, ZHANG X, YANG S. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets[J]. Physical Chemistry Chemical Physics Pccp, 2011, 13(27): 12554-12558. | 29 | NOLAN M, LONG R, ENGLISH N J, et al. Hybrid density functional theory description of N- and C-doping of NiO[J]. Journal of Chemical Physics, 2011, 134(22): 735. | 30 | SARHAN A, NAKANISHI H, DINO W A, et al. Oxygen vacancy effects on electronic structure of Pt/NiO/Pt capacitor-like system[J]. Surface Science, 2012, 606(3/4): 239-246. | 31 | WANG D W, LI F, FANG H T, et al. Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport[J]. Journal of Physical Chemistry B, 2006, 110(17): 8570-8575. | 32 | 李诗杰, 张继刚, 李金晓, 等. 超级电容器用马尾藻基超级活性碳的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 57-164. | 32 | LI Shijie, ZHANG Jigang, LI Jinxiao, et al. Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Jourmal of Materials Engineering, 2018, 46(7): 157-164. | 33 | QIU Y, ZHANG X, YANG S. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets[J]. Physical Chemistry Chemical Physics, 2011, 13(27): 12554-12558. | 34 | 展义臻, 朱平, 张建波, 等. 海藻纤维的性能与应用[J]. 印染助剂, 2006, 23(6): 10-12. | 34 | ZHAN Yizhen, ZHU Ping, ZHANG Jianbo, et al. The properties and application of alginate fiber[J]. Textile Auxiliaries, 2006, 23(6): 10-12. | 35 | 周世海, 蔡继业, 陈勇. 钙离子对海藻酸钠自组装行为影响的AFM研究[J]. 药物生物技术, 2004, 11(2): 81-85. | 35 | ZHOU Shihai, CAI Jiye, CHEN Yong. Effect of Ca2+ on self-assembly films of sodium alginate studied by AFM[J]. Pharmaceutical Biotechnology, 2004, 11(2): 81-85. | 36 | 魏福祥, 王新辉, 杨晓宇. 天然高分子海藻酸盐成膜研究[J]. 日用化学工业, 1998 (7): 22-25. | 36 | WEI Fuxiang, WANG Xinhui, YANG Xiaoyu. Study on film formation of natural polymer alginates[J]. China Surfactant Detergent & Consmetics, 1998 (7): 22-25. | 37 | DONG X, WANG X, WANG J, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon, 2012, 50(13): 4865-4870. | 38 | ZHOU H, LV B, XU Y, et al. Synthesis and electrochemical properties of NiO nanospindles[J]. Materials Research Bulletin, 2014, 50(2): 399-404. | 39 | PAWAR S M, INAMDAR A I, GURAV K V, et al. Effect of oxidant on the structural, morphological and supercapacitive properties of nickel hydroxide nanoflakes electrode films[J]. Materials Letters, 2015, 141: 336-339. | 40 | SUN H, LIU S, LU Q, et al. Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor[J]. Materials Letters, 2014, 128(8): 136-139. | 41 | PANG H, MA Y, LI G, et al. Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials[J]. Dalton Transactions, 2012, 41(43): 13284-13291. | 42 | DAN Q, MIN Z, ZHANG L, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J]. Scientific Reports, 2014, 4(9): 5294. |
|