Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4036-4043.DOI: 10.16085/j.issn.1000-6613.2019-0018
• Energy processes and technology • Previous Articles Next Articles
Ran YAN1,2(),Zhaoyang CHEN2,Zhiming XIA2(),Xiaosen LI2(),Chungang XU2,Kefeng YAN2,Jing CAI2
Received:
2019-01-03
Online:
2019-09-05
Published:
2019-09-05
Contact:
Zhiming XIA,Xiaosen LI
燕然1,2(),陈朝阳2,夏志明2(),李小森2(),徐纯刚2,颜克凤2,蔡晶2
通讯作者:
夏志明,李小森
作者简介:
燕然(1994—),男,硕士研究生,研究方向为水合物分离技术。E-mail:基金资助:
CLC Number:
Ran YAN,Zhaoyang CHEN,Zhiming XIA,Xiaosen LI,Chungang XU,Kefeng YAN,Jing CAI. Kinetic study on CO2/H2 hydrate formation with 13X molecular sieve coupled TBAB[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4036-4043.
燕然,陈朝阳,夏志明,李小森,徐纯刚,颜克凤,蔡晶. 13X分子筛耦合四丁基溴化铵促进剂作用下CO2/H2水合物形成动力学[J]. 化工进展, 2019, 38(9): 4036-4043.
物理参数 | 数值 |
---|---|
粒径/mm | 3.0~5.0 |
颗粒密度/g·cm-3 | 0.914 |
比表面积/m2·g-1 | 303.945 |
微孔体积(<1.7nm)/cm3·g-1 | 0.027 |
介孔体积(1.7~300nm)/cm3·g-1 | 0.072 |
实际孔容/cm3·g-1 | 0.099 |
平均孔径/nm | 3.281 |
含水饱和度/cm3·g-1 | 0.998 |
物理参数 | 数值 |
---|---|
粒径/mm | 3.0~5.0 |
颗粒密度/g·cm-3 | 0.914 |
比表面积/m2·g-1 | 303.945 |
微孔体积(<1.7nm)/cm3·g-1 | 0.027 |
介孔体积(1.7~300nm)/cm3·g-1 | 0.072 |
实际孔容/cm3·g-1 | 0.099 |
平均孔径/nm | 3.281 |
含水饱和度/cm3·g-1 | 0.998 |
实验 | 分子筛型号 | TBAB摩尔分数/% | P/MPa | T/K | 120min单位气体消耗量/mmol·(mol H2O)-1 | 单位气体消耗量/mmol·(mol H2O)-1 |
---|---|---|---|---|---|---|
1 | 13X | 0 | 4 | 279.15 | — | — |
2 | 13X | 0.29 | 4 | 279.15 | 14.70 | 21.97 |
3 | 0.29 | 3 | 279.15 | 3.06 | 4.47 | |
4 | 13X | 0.29 | 3 | 279.15 | 9.50 | 12.76 |
5 | 13X | 0.60 | 3 | 279.15 | 9.26 | 13.20 |
6 | 13X | 1.00 | 3 | 279.15 | 9.39 | 13.76 |
7 | 13X | 1.38 | 3 | 279.15 | 8.64 | 11.18 |
8 | 13X | 2.34 | 3 | 279.15 | 3.45 | 7.55 |
9 | 13X | 0.29 | 6 | 279.15 | 18.75 | 27.71 |
10 | 13X | 0.29 | 3 | 280.65 | 9.62 | 12.43 |
11 | 13X | 0.6 | 3 | 280.65 | 8.56 | 12.75 |
12 | 13X | 1.00 | 3 | 280.65 | 8.43 | 12.56 |
13 | 13X | 1.38 | 3 | 280.65 | 7.89 | 10.81 |
14 | 13X | 2.34 | 3 | 280.65 | 7.16 | 8.66 |
实验 | 分子筛型号 | TBAB摩尔分数/% | P/MPa | T/K | 120min单位气体消耗量/mmol·(mol H2O)-1 | 单位气体消耗量/mmol·(mol H2O)-1 |
---|---|---|---|---|---|---|
1 | 13X | 0 | 4 | 279.15 | — | — |
2 | 13X | 0.29 | 4 | 279.15 | 14.70 | 21.97 |
3 | 0.29 | 3 | 279.15 | 3.06 | 4.47 | |
4 | 13X | 0.29 | 3 | 279.15 | 9.50 | 12.76 |
5 | 13X | 0.60 | 3 | 279.15 | 9.26 | 13.20 |
6 | 13X | 1.00 | 3 | 279.15 | 9.39 | 13.76 |
7 | 13X | 1.38 | 3 | 279.15 | 8.64 | 11.18 |
8 | 13X | 2.34 | 3 | 279.15 | 3.45 | 7.55 |
9 | 13X | 0.29 | 6 | 279.15 | 18.75 | 27.71 |
10 | 13X | 0.29 | 3 | 280.65 | 9.62 | 12.43 |
11 | 13X | 0.6 | 3 | 280.65 | 8.56 | 12.75 |
12 | 13X | 1.00 | 3 | 280.65 | 8.43 | 12.56 |
13 | 13X | 1.38 | 3 | 280.65 | 7.89 | 10.81 |
14 | 13X | 2.34 | 3 | 280.65 | 7.16 | 8.66 |
1 | IPCC . Climate change 2007[R]. Cambridge, UK: Cambridge University Press, 2010: 116. |
2 | BABU P , LINGA P , KUMAR R , et al . A review of the hydrate based gas separation(HBGS) process for carbon dioxide pre-combustion capture[J]. Energy, 2015, 85: 261-279. |
3 | BONALUMI D , GIUFFRIDA A . Investigations of an air-blown integrated gasification combined cycle fired with high-sulphur coal with post-combustion carbon capture by aqueous ammonia[J]. Energy, 2016, 117: 439-49. |
4 | 宗杰, 马庆兰, 陈光进, 等 . 二氧化碳分离捕集研究进展[J]. 现代化工, 2016, 36(11): 56-60. |
ZONG J , MA Q L, CHEN G J , et al . Progress of the separation and capture of CO2 [J]. Modern Chemical Industry, 2016, 36(11): 56-60. | |
5 | 徐纯刚, 李小森, 陈朝阳 . 水合物法分离二氧化碳的研究现状[J]. 化工进展, 2011, 30(4): 701-708. |
XU C G , LI X S , CHEN Z Y . Research on hydrate-based carbon dioxide separation[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 701-708. | |
6 | SPENCER D F . Methods and systems for selectively separating CO2 from a multicomponent gaseous stream to produce a high pressure CO2 product: US7128777[P]. 2006-10-31. |
7 | 徐纯刚, 李小森, 陈朝阳 . 新型促进剂对二氧化碳水合物形成效果的研究[J]. 化工进展, 2009, 28(1): 301-305. |
XU C G , LI X S , CHEN Z Y . Study on the formation of carbon dioxide hydrate by a new additive agent[J]. Chemical Industry and Engineering Progress, 2009, 28(1): 301-305. | |
8 | LI X S , XU C G , CHEN Z Y , et al . Tetra-n-butyl ammonium bromide semiclathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride[J]. Energy, 2010, 35(9): 3902-3908. |
9 | BABU P , CHIN W I , KUMAR R , et al . Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4878-4887. |
10 | LI X S , XIA Z M , CHEN Z Y , et al . Equilibrium hydrate formation conditions for the mixtures of CO2+H2+ tetra butyl ammonium bromide[J]. Journal of Chemical and Engineering Data, 2010, 55(6): 2180-2184. |
11 | LI X S , XIA Z M , CHEN Z Y . Gas hydrate formation process for capture of carbon dioxide from fuel gas mixture[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11614-11619. |
12 | 臧小亚, 梁德青, 吴能友 . 不同浓度TBAB半笼型水合物法分离沼气中CO2过程的研究[J]. 高校化学工程学报, 2016, 30(6):1231-1248. |
ZANG X Y , LIANG D Q , WU N Y . CO2 removal from simulated biogas using semi-clathrate hydrates of different concentration tetra-n-butyl ammonium bromide aqueous solutions[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(6): 1231-1248. | |
13 | LI S F , FAN S S , WANG J Q , et al . CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide[J]. Journal of Natural Gas Chemistry, 2009, 18(1): 15-20. |
14 | YANG M J , JING W , ZHAO J F , et al . Promotion of hydrate-based CO2 capture from flue gas by additive mixtures [THF(tetrahydrofuran] + TBAB (tetra-n-butyl ammonium bromide)][J]. Energy, 2016, 106: 546-553. |
15 | 鲁涛, 张郁, 李小森, 等 . CO2-N2-TBAB和CO2-N2-THF体系的水合物平衡生成条件[J]. 过程工程学报, 2009, 9(3): 541-544. |
LU T , ZHANG Y , LI X S , et al . Equilibrium conditions of hydrate formation in the systems of CO2-N2-TBAB and CO2-N2-THF[J]. The Chinese Journal of Process Engineering, 2009, 9(3): 541-544. | |
16 | 李玉星, 陈玉亮 . SDS与THF对水合物法分离CO2+N2混合气的影响[J]. 天然气工业, 2011, 31(7): 82-86. |
LI Y X , CHEN Y L . Effects of SDS and THF on the separation of CO2+N2 mixed gases based on the hydrate method[J]. Natural Gas Industry, 2011, 31(7): 82-86. | |
17 | LI S F , FAN S S , WANG J Q , et al . Clathrate hydrate capture of CO2 from simulated flue gas with cyclopentane/water emulsion[J]. Chinese Journal of Chemical Engineering, 2010, 18(2): 202-206. |
18 | LIU H , WANG J , CHEN G J . High efficiency separation of a CO2/H2 mixture via hydrate formation in W/O emulsions in the presence of cyclopentane and TBAB[J]. International Journal of Hydrogen Energy, 2014, 39: 7910-7918. |
19 | LI X S , XU C G , CHEN Z Y , et al . Hydrate-based precombustion carbon dioxide capture process in the system with tetra-n butyl ammonium bromide solution in the presence of cyclopentane[J]. Energy, 2011, 36(3): 1394-1403. |
20 | 郝文峰, 樊栓师, 王金渠 . 搅拌对甲烷水合物生成的影响[J]. 天然气化工, 2005, 30(3): 5-7. |
HAO W F , FAN S S , WANG J Q . Effects of stirrer on methane hydrate formation[J]. Natural Gas Chemical Industry, 2005, 30(3): 5-7. | |
21 | 刘妮, 李菊, 陈伟军, 等 . 机械强化制备二氧化碳水合物的特性研究[J]. 中国电机工程学报, 2011, 31(2): 51-54. |
22 | LIU N , LI J , CHEN W J , et al . Performance investigations on CO2 hydrate production with stirring[J]. Proceedings of the CSEE, 2011, 31(2): 51-54. |
23 | MORK M . Formation rate of natural gas hydrate[D]. Norway: Norwegian University of Science and Technology, 2002. |
24 | 吕秋楠, 陈朝阳, 李小森 . 气体水合物快速生成强化技术与方法研究进展[J]. 化工进展, 2011, 30(1): 74-78. |
LÜ Q N , CHEN Z Y , LI X S . Advances in technology and method for promoting gas hydrate rapid formation[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 74-78. | |
25 | XU C G , LI X S , LÜ Q N , et al . Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment[J]. Energy, 2012, 44(1): 358-366. |
26 | 谢应明, 刘道平, 樊燕, 等 . 喷雾式天然气水合物储气系统的实验研究[J]. 上海理工大学学报, 2007, 29(4): 368-372. |
XIE Y M , LIU D P , FAN Y , et al . Experimental research on natural gas hydrate storage process using water spraying[J]. Journal of University of Shanghai for Science and Technology, 2007, 29(4): 368-372. | |
27 | 李刚, 谢应明, 刘道平, 等 . 进气方式影响CO2水合物喷雾合成的实验研究[J]. 低温与特气, 2008, 26(2): 15-19. |
LI G , XIE Y M , LIU D P , et al . Experimental research on influence of gas entry modes on CO2 hydrate formation using water spraying[J]. Low Temperature and Specialty Gases, 2008, 26(2): 15-19. | |
28 | ZHONG Y , ROGERS R E . Surfactant elects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187. |
29 | 王树立, 宋琦, 郑志, 等 . 不同类型体系下复合型添加剂对水合物生成的影响[J]. 天然气化工, 2009, 34(6): 44-48. |
WANG S L , SONG Q , ZHENG Z , et al . Effect of compound additives on natural gas hydrate formation in different systems[J]. Natural Gas Chemical Industry, 2009, 34(6): 44-48. | |
30 | XIA Z M , LI X S , CHEN Z Y , et al . Hydrate-based hydrogen purification from simulated syngas with synergic additives[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2649-2659. |
31 | XIA Z M , LI X S , CHEN Z Y , et al . Hydrate-based acidic gases capture for clean methane with new synergic additives[J]. Applied Energy, 2016, 207: 584-593. |
32 | LINGA P , ADEYEMO A , ENGLEZOS P . Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide[J]. Environmental Science & Technology, 2008, 42(1): 315-320. |
33 | LEE E K, KIM Y . Gas hydrate formation method to capture the carbon dioxide for pre-combustion process in IGCC plant[J]. International Journal of Hydrogen Energy, 2011, 36(1): 1115-1121. |
34 | YANG L , FAN S , WANG Y , et al . Accelerated formation of methane hydrate in aluminum foam[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11563-11569. |
35 | NAMBIAR A , BABU P , LINGA P . CO2 capture using the clathrate hydrate process employing cellulose foam as a porous media[J]. Canadian Journal of Chemistry, 2015, 93(8): 808-814. |
36 | ADEYEMO A , KUMAR R , LINGAR P , et al . Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column[J]. International Journal of Greenhouse Gas Control, 2010, 4(3): 478-485. |
37 | SEO Y T, MOUDRAKOVSKI I L , RIPMEESTER J A , et al . Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels[J]. Environmental Science & Technology, 2005, 39(7): 2315-2319. |
38 | LINGA P , HALIGVA C , NAM S C, et al . Gas hydrate formation in a variable volume bed of silica sand particles[J]. Energy Fuels, 2009, 23:5496. |
39 | BABU P , KUMAR R , LINGA P . Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process[J]. Energy, 2013, 50(1): 364-373. |
40 | ZHONG D L , LI Z , LU Y Y , et al . Investigation of CO2 capture from a CO2+CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve[J]. Industrial & Engineering Chemistry Research, 2016, 55: 7973-7980. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[3] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[4] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[5] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[6] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[7] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[8] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[9] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[10] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[11] | LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759. |
[12] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[13] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[14] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[15] | LI Yun, CUI Nan, XIONG Xingxing, HUANG Zhiyuan, WANG Dongliang, XU Dan, LI Jun, LI Zebing. Influence of rare earth element Er(Ⅲ) on performance of short-cut nitrification and its inhibition kinetics [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1659-1668. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 245
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 356
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |