Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4044-4051.DOI: 10.16085/j.issn.1000-6613.2019-0274
• Energy processes and technology • Previous Articles Next Articles
Tong LI(),Zhaoping ZHONG(
),Bo ZHANG
Received:
2019-02-26
Online:
2019-09-05
Published:
2019-09-05
Contact:
Zhaoping ZHONG
通讯作者:
仲兆平
作者简介:
栗童(1993—),男,硕士研究生。E-mail:基金资助:
CLC Number:
Tong LI,Zhaoping ZHONG,Bo ZHANG. The synergistic effect of co-pyrolysis of cellulose andhydrogen-enriched feedstock[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4044-4051.
栗童,仲兆平,张波. 纤维素与多氢原料共热解的协同效应[J]. 化工进展, 2019, 38(9): 4044-4051.
9 | 彭云云, 武书彬 . 麦草半纤维素的快速热裂解实验研究[J]. 燃料化学学报, 2011(1): 21-25. |
PENG Y Y , WU S B . Experimental study on rapid pyrolysis of wheat straw hemicellulose[J]. Journal of Fuel Chemistry, 2011(1): 21-25. | |
10 | 高新源, 徐庆, 李占勇, 等 .生物质快速热解装置研究进展[J]. 化工进展, 2016, 35(10): 3032-3041. |
GAO X Y , XU Q , LI Z Y , et al . Research progress of biomass rapid pyrolysis device[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3032-3041. | |
11 | 朱锡锋, 陆强 .生物质快速热解制备生物油[J]. 科技导报, 2007, 25(21): 69-75. |
ZHU X F , LU Q . Preparation of bio oil by fast pyrolysis of biomass[J]. Science and Technology Review, 2007, 25(21): 69-75. | |
12 | 赵坤 . 基于三组分的生物质快速热解实验研究[J]. 太阳能学报, 2011, 32(5): 710-717. |
ZHAO K . Experimental study on biomass pyrolysis based on three components[J]. Acta Energiae Solaris Sinica, 2011, 32(5): 710-717. | |
13 | WANG S . Influence of the interaction of components on the pyrolysis behavior of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 183-189. |
14 | 李军, 魏海国, 杨维军, 等 . 生物质热解液化制油技术及进展[J]. 化工进展, 2010, 29(s1): 43-47. |
15 | LI J , WEI H G , YANG W J , et al . Technology and progress of biomass pyrolysis and liquefaction for oil production[J]. Chemical Industry and Engineering Progress, 2010, 29(s1): 43-47. |
16 | 左承基, 钱叶剑, 何建辉, 等 . 木质生物质直接液化产物的红外光谱分析[J]. 可再生能源, 2006 (1): 10-12. |
1 | CHENG H F , HU Y A . Municipal solid waste(MSW) as a renewable source of energy: current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824. |
2 | BRIDGWATER A V . Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012(38): 68-94. |
16 | ZUO C J , QIAN Y J , HE J H , et al . Infrared spectroscopic analysis of direct liquefaction products of lignocellulosic biomass[J]. Renewable Energy, 2006 (1): 10-12.. |
17 | 王文亮, 时宇杰, 王少华, 等 .纤维素与废轮胎微波共热解规律及产物特性[J].高等学校化学学报, 2018, 39: 964-970 |
WANG W L , SHI Y J , WANG S H , et al . Microwave co-pyrolysis of cellulose and waste tires and product characteristics[J]. Journal of Chemistry of Colleges and Universities, 2018, 39: 964-970. | |
18 | ZHANG H Y , CHENG Y T , VISPUTE T P , et al . Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio[J]. Energy & Environmental Science, 2011, 4: 2297-2307. |
19 | 姜小祥, 李静丹, 王静, 等 .生物质三组分在聚乙二醇辅助热解液化过程中的协同作用[J].林产化学与工业, 2017, 37 (6): 117-124. |
JIANG X X , LI J D , WANG J , et al .Synergetic mechanism of three components of biomass liquefaction in polyethylene glycol[J]. Chemistry and Industry of Forest Products, 2017, 37 (6): 117-124. | |
20 | 郭慧敏, 李翔宇, 王海彦, 等 .纤维素和聚丙烯共催化热解热重分析及动力学研究[J].太阳能学报, 2017, 38(10): 2706-2710. |
GUO H M , LI X Y , WANG H Y , et al . Thermogravimetric analysis and kinetics of co-catalytic pyrolysis of cellulose and polypropylene blends [J]. Acta Energiae Solaris Sinica, 2017, 38 (10): 2706-2710. | |
21 | SANJANA D , BART D , JOHANN F , et al . Co-pyrolysis of LDPE and cellulose: synergies during devolatilization and condensation[J].Journal of Analytical and Applied Pyrolysis, 2017, 126: 307-314. |
22 | 姚燕, 王树荣, 郑赟, 等 .基于热红联用分析的木质素热裂解动力学研究[J].燃料科学与技术, 2007, 13 (1): 50-55. |
YAO Y , WANG S R , ZHENG Y , et al .Pyrolysis kinetics of lignin based on thermal red analysis[J].Fuel Science and Technology, 2007, 13 (1): 50-55. | |
23 | 翁诗甫 . 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010. |
WENG S F . Fourier transform infrared spectroscopy[M]. 2nd ed.Beijing: Chemical Industry Press, 2010. | |
24 | 胡松, ANDREAS J , 向军, 等 . 基于不同三组分模型解析生物质热解过程[J]. 化工学报, 2007, 58(10): 2580-2586. |
HU S , ANDREAS J , XIANG J , et al . Analysis of biomass pyrolysis process based on different three-component models[J]. Journal of Chemical Industry and Engineering, 2007, 58(10): 2580-2586. | |
25 | 冷尔唯, 龚勋, 张扬, 等 . 纤维素热解机理研究进展: 以中间态纤维素为核心的纤维素演变[J]. 化工学报, 2018, 69(1): 239-248. |
LENG E W , GONG X , ZHANG Y , et al . Progress of cellulose pyrolysis mechanism: cellulose evolution based on intermediate cellulose[J]. CIESC Journal, 2018, 69(1): 239-248. | |
26 | ZHOU Z Y , CHEN X M , WANG Y Z , et al . Online photoionization mass spectrometric evaluation of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5[J]. Bioresource Technology, 2019, 275: 130-137. |
3 | SOLANTAUSTA Y . Bio-oil production from biomass: teps toward demonstration[J]. Energy & Fuels, 2012, 26(1): 233-240. |
4 | 董丽 .生物质制芳烃技术进展与发展前景[J]. 化工进展, 2013, 32(7): 1526-1532. |
DONG L . Progress and development prospect of biomass aromatics production technology[J].Chemical Industry and Engineering Progress, 2013, 32(7): 1526-1532. | |
5 | 刘荣厚,牛卫生, 张大雷 .生物质热化学转换技术[M]. 北京: 化学工业出版社, 2005. |
LIU R H , NIU W S , ZHANG D L . Thermochemical conversion technology of biomass[M]. Beijing: Chemical Industry Press, 2005. | |
6 | 朱玲莉, 仲兆平, 王佳, 等 . 基于PY-GC/MS的生物质组分间相互作用的热解实验[J]. 化工进展, 2016, 35(12): 3879-3884. |
ZHU L L , ZHONG Z P , WANG J ,et al . Pyrolysis experiments of biomass components based on PY-GC/MS[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3879-3884. | |
7 | 吴逸民 . 生物质主要组分低温热解研究[J]. 燃料化学学报, 2009, 37(4): 427-432. |
WU Y M . Pyrolysis of biomass main components at low temperature [J]. Journal of Fuel Chemistry, 2009, 37(4): 427-432. | |
8 | CARRIER M . Comparison of slow and vacuum pyrolysis of sugar cane bagasse[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(1): 18-26. |
[1] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[2] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[3] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[4] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, DING Xueyu, QI Shuaijie, ZHANG Yuyao, LIU Jun, GAO Jiawei. Characteristics of three-phase products from co-pyrolysis of sewage sludge and PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2122-2129. |
[5] | TANG Chunxia, LI Meng, WANG Yuxi, ZONG Yongzhong, FU Shaohai. Progress in structural design of functionalized cellulose nanomaterials for Cr(Ⅵ) removal [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 585-594. |
[6] | LIU Nan, HU Yiming, YANG Ying, LI Hongjin, GAO Zhuqing, HAO Xiuli. Microwave assisted co-pyrolysis of waste polypropylene /activated carbon to produce combustible pyrolysis gas and light pyrolysis oil [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 150-159. |
[7] | HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854. |
[8] | YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084. |
[9] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[10] | ZHAN Xun, CHEN Jian, YANG Zhaozhe, WU Guomin, KONG Zhenwu, SHEN Kuizhong. Progress on superhydrophobic materials from nanocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4303-4313. |
[11] | QIU Yijuan, LIN Jiawei, QIN Jirui, WU Jiayin, LIN Fengcai, LU Beili, TANG Lirong, HUANG Biao. Double dynamic covalent bond crosslinked nano-cellulose conductive hydrogel for a flexible sensor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4406-4416. |
[12] | ZHUANG Yuting, WANG Jianhua, XIANG Zhiyan, ZHAO Juan, XU Qiong, LIU Xianxiang, YIN Dulin. Research progress in preparation and kinetics of γ-valerolactone synthesis from hemicellulose and its derivatives [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3519-3533. |
[13] | SHEN Juanli, FU Shiyu. Research progress of cellulose-based hydrogels [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3022-3037. |
[14] | YE Zequan, WU Qingyun, GU Lin. Recent progress in cellulose-based materials for oil-water separation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3038-3050. |
[15] | TANG Ting, ZHOU Wenfeng, WANG Zhi, ZHU Chenjie, XU Jingliang, ZHUANG Wei, YING Hanjie, OUYANG Pingkai. Advances of multienzymes co-immobilization technology for sugar catalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2636-2648. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 568
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 349
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |