Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 3022-3037.DOI: 10.16085/j.issn.1000-6613.2021-1308
• Materials science and technology • Previous Articles Next Articles
Received:
2021-06-23
Revised:
2021-09-06
Online:
2022-06-21
Published:
2022-06-10
Contact:
FU Shiyu
通讯作者:
付时雨
作者简介:
沈娟莉(1994—),女,博士研究生,研究方向为纤维基水凝胶。E-mail:基金资助:
CLC Number:
SHEN Juanli, FU Shiyu. Research progress of cellulose-based hydrogels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3022-3037.
沈娟莉, 付时雨. 纤维素基水凝胶的研究进展[J]. 化工进展, 2022, 41(6): 3022-3037.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1308
编号 | 名称 | 刺激响应类型 | 应用 | 参考文献 |
---|---|---|---|---|
1 | MC-TPE | 热响应性 | 荧光热传感器 | [ |
2 | PNIPAM/SA-TOCNF | 热敏性和pH敏性 | 智能传感器 | [ |
3 | CD/trans-AAP | 光响应和离子响应 | 自修复和控制药物释放 | [ |
4 | DNA/联吡啶二乙烯 | 光、氧化还原和化学 | 驱动器、传感器或机器人 | [ |
5 | BC-g-PSS | 离子响应 | 给药、组织工程 | [ |
6 | BC/SA/MWCNTs | pH、电场响应 | 给药 | [ |
编号 | 名称 | 刺激响应类型 | 应用 | 参考文献 |
---|---|---|---|---|
1 | MC-TPE | 热响应性 | 荧光热传感器 | [ |
2 | PNIPAM/SA-TOCNF | 热敏性和pH敏性 | 智能传感器 | [ |
3 | CD/trans-AAP | 光响应和离子响应 | 自修复和控制药物释放 | [ |
4 | DNA/联吡啶二乙烯 | 光、氧化还原和化学 | 驱动器、传感器或机器人 | [ |
5 | BC-g-PSS | 离子响应 | 给药、组织工程 | [ |
6 | BC/SA/MWCNTs | pH、电场响应 | 给药 | [ |
序号 | 名称 | 性能 | 应用 | 参考文献 |
---|---|---|---|---|
1 | XG-PAM/CNF | 附着力好,机械强度高,离子吸附能力强 | 水下报警救援系统 | [ |
2 | 聚吡咯/纤维素混杂水凝胶 | 电容性能,高比电容、良好的机械强度和柔韧性 | 电极材料 | [ |
3 | TOCNF-GN/PAA | 机械强度、电导率、自修复优良 | 机器人,电子皮肤 | [ |
4 | 超长银纳米线复合双网络水凝胶 | 超拉伸、自愈合和可穿戴性 | 可穿戴表皮传感器 | [ |
5 | DCIHs | 超拉伸性、高压缩性、优良的防冻性能 | 柔性电子器件 | [ |
序号 | 名称 | 性能 | 应用 | 参考文献 |
---|---|---|---|---|
1 | XG-PAM/CNF | 附着力好,机械强度高,离子吸附能力强 | 水下报警救援系统 | [ |
2 | 聚吡咯/纤维素混杂水凝胶 | 电容性能,高比电容、良好的机械强度和柔韧性 | 电极材料 | [ |
3 | TOCNF-GN/PAA | 机械强度、电导率、自修复优良 | 机器人,电子皮肤 | [ |
4 | 超长银纳米线复合双网络水凝胶 | 超拉伸、自愈合和可穿戴性 | 可穿戴表皮传感器 | [ |
5 | DCIHs | 超拉伸性、高压缩性、优良的防冻性能 | 柔性电子器件 | [ |
1 | SHARMA Gaurav, THAKUR Bharti, NAUSHAD Mu, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection[J]. Environmental Chemistry Letters, 2018, 16(1): 113-146. |
2 | VLIERBERGHE S VAN, DUBRUEL P, SCHACHT E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review[J]. Biomacromolecules, 2011, 12(5): 1387-1408. |
3 | DAI Lin, MA Mingshuai, XU Jikun, et al. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation[J]. Chemistry of Materials, 2020, 32(10): 4324-4330. |
4 | KONO Hiroyuki, FUJITA Sayaka. Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1, 2, 3, 4-butanetetracarboxylic dianhydride[J]. Carbohydrate Polymers, 2012, 87(4): 2582-2588. |
5 | SONG Delong, ZHAO Yulin, DONG Chunxu, et al. Surface modification of cellulose fibers by starch grafting with crosslinkers[J]. Journal of Applied Polymer Science, 2009, 113(5): 3019-3026. |
6 | KANG Hongliang, LIU Ruigang, HUANG Yong. Cellulose-based gels[J]. Macromolecular Chemistry and Physics, 2016, 217(12): 1322-1334. |
7 | GHORBANI Sadegh, EYNI Hossein, BAZAZ Sajad Razavi, et al. Hydrogels based on cellulose and its derivatives: applications, synthesis, and characteristics[J]. Polymer Science, Series A, 2018, 60(6): 707-722. |
8 | OVALLE-SERRANO Sergio A, DÍAZ-SERRANO Laura A, HONG Caroline, et al. Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles[J]. Cellulose, 2020, 27(17): 9947-9961. |
9 | SUN Xiaohang, TYAGI Preeti, AGATE Sachin, et al. Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films[J]. Carbohydrate Polymers, 2019, 208: 495-503. |
10 | ABDEEN Zain, SAEED Rehana. Ionic interactions in cross-linked poly(vinyl alcohol) hydrogel blended with starch[J]. Revue Roumaine De Chimie, 2019, 64(3): 233-240. |
12 | KONO Hiroyuki, FUJITA Sayaka, OEDA Ikuo. Comparative study of homogeneous solvents for the esterification crosslinking of cellulose with 1,2,3,4-butanetetracarboxylic dianhydride and water absorbency of the reaction products[J]. Journal of Applied Polymer Science, 2013, 127(1): 478-486. |
13 | BULUT Emine. Ibuprofen microencapsulation within acrylamide-grafted chitosan and methylcellulose interpenetrating polymer network microspheres: synthesis, characterization, and release studies[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(4): 1098-1108. |
14 | LIU Hongchen, SUI Xiaofeng, XU Hong, et al. Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds[J]. Macromolecular Materials and Engineering, 2016, 301(6): 725-732. |
15 | SHAO Changyou, WANG Meng, CHANG Huanliang, et al. A self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6167-6174. |
16 | SANNINO A, MADAGHIELE M, CONVERSANO F, et al. Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability[J]. Biomacromolecules, 2004, 5(1): 92-96. |
17 | LIN Ong Hui, KUMAR R N, ROZMAN H D, et al. Grafting of sodium carboxymethylcellulose (CMC) with glycidyl methacrylate and development of UV curable coatings from CMC-g-GMA induced by cationic photoinitiators[J]. Carbohydrate Polymers, 2005, 59(1): 57-69. |
18 | SANNINO A, NICOLAIS L. Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels[J]. Polymer, 2005, 46(13): 4676-4685. |
19 | RAHMAN Mohammed Mizanur, RIMU Sunzida H. Recent development in cellulose nanocrystal-based hydrogel for decolouration of methylene blue from aqueous solution: a review[J]. International Journal of Environmental Analytical Chemistry, 2020: 1-18. |
20 | KAMOUN Elbadawy A, CHEN Xin, MOHY ELDIN Mohamed S, et al. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers[J]. Arabian Journal of Chemistry, 2015, 8(1): 1-14. |
21 | POLO Ester, ARABAN Vida, PELAZ Beatriz, et al. Photothermal effects on protein adsorption dynamics of PEGylated gold nanorods[J]. Applied Materials Today, 2019, 15: 599-604. |
22 | MOHAMMADINEJAD Reza, MALEKI Hajar, Eneko LARRAÑETA, et al. Status and future scope of plant-based green hydrogels in biomedical engineering[J]. Applied Materials Today, 2019, 16: 213-246. |
23 | LU Chuanwei, WANG Chunpeng, WANG Jifu, et al. Integration of hydrogen bonding interaction and Schiff-base chemistry toward self-healing, anti-freezing, and conductive elastomer[J]. Chemical Engineering Journal, 2021, 425: 130652. |
24 | ZHAO Ting, ZHANG Shanshan, BI Yuting, et al. Development and characterisation of multi-form composite materials based on silver nanoclusters and cellulose nanocrystals[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125257. |
25 | WANG Wei, NI Jiaming, CHEN Licai, et al. Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation[J]. International Journal of Biological Macromolecules, 2020, 165: 1-10. |
26 | FREDRICK Rahul, PODDER Arup, VISWANATHAN Aparna, et al. Synthesis and characterization of polysaccharide hydrogel based on hydrophobic interactions[J]. Journal of Applied Polymer Science, 2019, 136(25): 47665. |
27 | OKUBO Masanori, IOHARA Daisuke, ANRAKU Makoto, et al. A thermoresponsive hydrophobically modified hydroxypropylmethylcellulose/cyclodextrin injectable hydrogel for the sustained release of drugs[J]. International Journal of Pharmaceutics, 2020, 575: 118845. |
28 | CHEN Wei, LI Delin, BU Yunhao, et al. Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts[J]. Cellulose, 2020, 27(3): 1113-1126. |
29 | ZHANG Baichao, WANG Chao, WANG Yinchuan, et al. A facile method to synthesize strong salt-enhanced hydrogels based on reversible physical interaction[J]. Soft Matter, 2020, 16(3): 738-746. |
30 | MASRUCHIN Nanang, PARK Byung Dae, CAUSIN Valerio. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 265-272. |
31 | JANARTHANAN Gopinathan, TRAN Hao Nguyen, Eunchong CHA, et al. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications[J]. Materials Science and Engineering: C, 2020, 113: 111008. |
32 | CHEN Wei, BU Yunhao, LI Delin, et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose[J]. Cellulose, 2020, 27(2): 853-865. |
33 | 成玮楠. 基于单组分凝胶因子主客体作用的多响应超分子水凝胶[D]. 武汉: 华中科技大学, 2018. |
CHENG Weinan. Multi-responsive supramolecular hydrogel based on host-guest interaction from mono-component gelator[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
34 | QU Dahui, WANG Qiaochun, ZHANG Qiwei, et al. Photoresponsive host-guest functional systems[J]. Chemical Reviews, 2015, 115(15): 7543-7588. |
35 | QI Lin, PENG Zhongkai, HUI Zhujin, et al. Iodine controlled pillar[5]arene-based multiresponsive supramolecular polymer for fluorescence detection of cyanide, mercury, and cysteine[J]. Macromolecules, 2017, 50(20): 7863-7871. |
36 | QUAN Changyun, CHEN Jingxiao, WANG Huiyuan, et al. Core-shell nanosized assemblies mediated by the alpha-beta cyclodextrin dimer with a tumor-triggered targeting property[J]. ACS Nano, 2010, 4(7): 4211-4219. |
37 | POULIQUEN G, AMIEL C, TRIBET C. Photoresponsive viscosity and host-guest association in aqueous mixtures of poly-cyclodextrin with azobenzene-modified poly(acrylic)acid[J]. The Journal of Physical Chemistry B, 2007, 111(20): 5587-5595. |
38 | GUO Xuhong, WANG Jie, LI Li, et al. Tailoring polymeric hydrogels through cyclodextrin host-guest complexation[J]. Macromolecular Rapid Communications, 2010, 31(3): 300-304. |
39 | REKHARSKY Mikhail V, INOUE Yoshihisa. Solvent and guest isotope effects on complexation thermodynamics of α-, β-, and 6-amino-6-deoxy-β-cyclodextrins[J]. Journal of the American Chemical Society, 2002, 124(41): 12361-12371. |
40 | ZHANG Jianxiang, MA Peter X. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective[J]. Advanced Drug Delivery Reviews, 2013, 65(9): 1215-1233. |
41 | DUAN Jiufang, JIANG Jianxin, HAN Chunrui, et al. The study of intermolecular inclusion in cellulose physical gels[J]. BioResources, 2014, 9(3): 4006-4013. |
42 | JIAN Chunmei, LIU Bowen, CHEN Xi, et al. Construction of photoresponsive supramolecular micelles based on ethyl cellulose graft copolymer[J]. Chinese Journal of Polymer Science, 2014, 32(6): 690-702. |
43 | LIN Ning, DUFRESNE Alain. Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin[J]. Biomacromolecules, 2013, 14(3): 871-880. |
44 | ZHANG Peng, QIAN Xiaoping, ZHANG Zhengkui, et al. Supramolecular amphiphilic polymer-based micelles with seven-armed polyoxazoline coating for drug delivery[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 5768-5777. |
45 | MIZUNO Shunsuke, ASOH Taka Aki, TAKASHIMA Yoshinori, et al. Cyclodextrin cross-linked polymer monolith for efficient removal of environmental pollutants by flow-through method[J]. Polymer Degradation and Stability, 2019, 160: 136-141. |
46 | SUGAWARA A, ASOH T A, TAKASHIMA Y, et al. Composite hydrogels reinforced by cellulose-based supramolecular filler[J]. Polymer Degradation and Stability, 2020, 177: 109157. |
47 | YANG Li, WANG Ting. Preparation of cellulosic drug-loaded hydrogel beads through electrostatic and host-guest interactions[J]. Journal of Applied Polymer Science, 2018, 135(31): 46593. |
48 | HAN Shuai, WANG Ting, YANG Li, et al. Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism[J]. International Journal of Biological Macromolecules, 2017, 105: 377-384. |
49 | TSUCHIYA Hinako, SINAWANG Garry, ASOH Taka-Aki, et al. Supramolecular biocomposite hydrogels formed by cellulose and host-guest polymers assisted by calcium ion complexes[J]. Biomacromolecules, 2020, 21(9): 3936-3944. |
50 | SENNA André M, BOTARO Vagner R. Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil[J]. Journal of Controlled Release, 2017, 260: 194-201. |
51 | KONO Hiroyuki, ZAKIMI Morito. Preparation, water absorbency, and enzyme degradability of novel chitin- and cellulose/chitin-based superabsorbent hydrogels[J]. Journal of Applied Polymer Science, 2013, 128(1): 572-581. |
52 | BHATTACHARYYA Ruma, Samit Kumar RAY. Kinetic and equilibrium modeling for adsorption of textile dyes in aqueous solutions by carboxymethyl cellulose/poly(acrylamide-co-hydroxyethyl methacrylate) semi-interpenetrating network hydrogel[J]. Polymer Engineering & Science, 2013, 53(11): 2439-2453. |
53 | SPAGNOL Cristiane, RODRIGUES Francisco H A, NETO Alberto G V C, et al. Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers[J]. European Polymer Journal, 2012, 48(3): 454-463. |
54 | MOHY ELDIN M S, OMER A M, SOLIMAN E A, et al. Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization[J]. Desalination and Water Treatment, 2013, 51(16/17/18): 3196-3206. |
55 | MA Lei, ZHANG Yu, WANG Xiaoyu, et al. Poly (acrylic acid-co-N-methylol acrylamide-co-butyl acrylate) copolymer grafted carboxymethyl cellulose binder for silicon anode in lithium ion batteries[J]. Journal of Applied Electrochemistry, 2021, 51(2): 131-141. |
56 | MA M L, YANG J M, YE Z P, et al. A facile strategy for synergistic integration of dynamic covalent bonds and hydrogen bonds to surmount the tradeoff between mechanical property and self-healing capacity of hydrogels[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000577. |
57 | YANG Xuefeng, LIU Guoqiang, PENG Liao, et al. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture[J]. Advanced Functional Materials, 2017, 27(40): 1703174. |
58 | MENG Xiangtao, EDGAR Kevin J. “Click” reactions in polysaccharide modification[J]. Progress in Polymer Science, 2016, 53: 52-85. |
59 | JEWETT John C, BERTOZZI Carolyn R. Cu-free click cycloaddition reactions in chemical biology[J]. Chemical Society Reviews, 2010, 39(4): 1272-1279. |
60 | MOHAMED Amina L, SOLIMAN Ahmed A F, Eman AboBakr ALI, et al. Hydrogel bioink based on clickable cellulose derivatives: synthesis, characterization and in vitro assessment[J]. International Journal of Biological Macromolecules, 2020, 163: 888-897. |
61 | MCOSCAR Thomas V C, GRAMLICH William M. Hydrogels from norbornene-functionalized carboxymethyl cellulose using a UV-initiated thiol-ene click reaction[J]. Cellulose, 2018, 25(11): 6531-6545. |
62 | YANG Jiayi, MEDRONHO Bruno, LINDMAN Björn, et al. Simple one pot preparation of chemical hydrogels from cellulose dissolved in cold LiOH/urea[J]. Polymers, 2020, 12(2): 373. |
63 | KONO Hiroyuki, ONISHI Kenta, NAKAMURA Taichi. Characterization and bisphenol A adsorption capacity of β-cyclodextrin-carboxymethylcellulose-based hydrogels[J]. Carbohydrate Polymers, 2013, 98(1): 784-792. |
64 | CHANG Chunyu, HE Meng, ZHOU Jinping, et al. Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels[J]. Macromolecules, 2011, 44(6): 1642-1648. |
65 | QU Jianhua, MENG Qingjuan, LIN Xiufeng, et al. Microwave-assisted synthesis of β-cyclodextrin functionalized celluloses for enhanced removal of Pb(II) from water: adsorptive performance and mechanism exploration[J]. The Science of the Total Environment, 2021, 752: 141854. |
66 | SALLEH Kushairi Mohd, ZAKARIA Sarani, GAN Sinyee, et al. Interconnected macropores cryogel with nano-thin crosslinked network regenerated cellulose[J]. International Journal of Biological Macromolecules, 2020, 148: 11-19. |
67 | XU Ran, ZHOU Junjie, GONG Hongyu, et al. Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte[J]. Biomaterials Science, 2022, 10: 1476-1485. |
68 | ZHANG Min, WAN Yu, WEN Yunxuan, et al. A novel poly(vinyl alcohol)/carboxymethyl cellulose/yeast double degradable hydrogel with yeast foaming and double degradable property[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109765. |
69 | YANG Yongyan, XU Lifeng, WANG Jinfei, et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications[J]. Carbohydrate Polymers, 2022: 119161. |
70 | QIU Xiaoyun, HU Shuwen. Smart materials based on cellulose: a review of the preparations, properties, and applications[J]. Materials, 2013, 6(3): 738-781. |
71 | 刘慰, 司传领, 杜海顺, 等. 纳米纤维素基水凝胶的制备及其在生物医学领域的应用进展[J]. 林业工程学报, 2019, 4(5): 11-19. |
LIU Wei, SI Chuanling, DU Haishun, et al. Advance in preparation of nanocellulose-based hydrogels and their biomedical applications[J]. Journal of Forestry Engineering, 2019, 4(5): 11-19. | |
72 | YAN Mingzhu, CHEN Tiantian, ZHANG Shuping, et al. A core-shell structured alginate hydrogel beads with tunable thickness of carboxymethyl cellulose coating for pH responsive drug delivery[J]. Journal of Biomaterials Science Polymer Edition, 2021, 32(6): 763-778. |
73 | SHEIKHY Shabnam, SAFEKORDI Ali Akbar, GHORBANI Marjan, et al. Synthesis of novel superdisintegrants for pharmaceutical tableting based on functionalized nanocellulose hydrogels[J]. International Journal of Biological Macromolecules, 2021, 167: 667-675. |
74 | ZHANG Weijie, SHAO Chunyi, YU Fei, et al. Y-27632 promotes the repair effect of umbilical cord blood-derived endothelial progenitor cells on corneal endothelial wound healing[J]. Cornea, 2021, 40(2): 203-214. |
75 | CARTHY SIMON J MC, GREGORY KENTON W, MORGAN JOHN W. Antimicrobial barriers, systems, and methods formed from hydrophilic polymer structures such as chitosan: EP1830755[P]. 2007-09-12. |
76 | TANG Shuo, CHI Kai, XU Hui, et al. A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications[J]. Carbohydrate Polymers, 2021, 252: 117123. |
77 | WANG Li, HU Sanming, ULLAH Muhammad Wajid, et al. Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels[J]. Carbohydrate Polymers, 2020, 249: 116829. |
78 | LUO Huize, Ruitao CHA, LI Juanjuan, et al. Advances in tissue engineering of nanocellulose-based scaffolds: a review[J]. Carbohydrate Polymers, 2019, 224: 115144. |
79 | PANDEY Abhishek. Pharmaceutical and biomedical applications of cellulose nanofibers: a review[J]. Environmental Chemistry Letters, 2021, 19(3): 2043-2055. |
80 | PATEL Dinesh K, DUTTA Sayan Deb, GANGULY Keya, et al. Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery[J]. International Journal of Biological Macromolecules, 2021, 170: 178-188. |
81 | MA Jianzhong, LI Xiaolu, BAO Yan. Advances in cellulose-based superabsorbent hydrogels[J]. RSC Advances, 2015, 5(73): 59745-59757. |
82 | NASCIMENTO Diego M, NUNES Yana L, FIGUEIRÊDO Maria C B, et al. Nanocellulose nanocomposite hydrogels: technological and environmental issues[J]. Green Chemistry, 2018, 20(11): 2428-2448. |
83 | KABIR S M F, SIKDAR P P, HAQUE B, et al. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications[J]. Progress in Biomaterials, 2018, 7(3): 153-174. |
84 | HAQUE Md Obaidul, MONDAL Md Ibrahim H, SAYEED Md Abu, et al. Formation and development of eco-friendly antimicrobial superabsorbent hydrogel for personal healthcare[C]//2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). July 11-12, 2019, Rajshahi, Bangladesh. IEEE, 2019: 1-4. |
85 | CHEN Si, ZHOU Bo, MA Meng, et al. Multiporous microstructure for enhancing the water absorption and swelling rate in poly(sodium acrylic acid) superabsorbent hydrogels based on a novel physical and chemical composite foaming system[J]. Journal of Applied Polymer Science, 2016, 133(46): 44149. |
86 | SANNINO Alessandro, DEMITRI Christian, MADAGHIELE Marta. Biodegradable cellulose-based hydrogels: design and applications[J]. Materials, 2009, 2(2): 353. |
87 | DAS D, PRAKASH P, ROUT P, et al. Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application[J]. Starch-Stärke, 2021, 73(1/2): 1900284. |
88 | CALCAGNILE P, SIBILLANO T, GIANNINI C, et al. Biodegradable poly(lactic acid)/cellulose-based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications[J]. Journal of Applied Polymer Science, 2019, 136(2): 47546. |
89 | 陆秀萍. 刺激响应型有机小分子凝胶的构筑[D]. 无锡: 江南大学, 2018. |
LU Xiuping. Building of stimuli-responsive low molecular organic gel[D]. Wuxi: Jiangnan University, 2018. | |
90 | WANG Haoying, WANG Fangyu, DENG Pengpeng, et al. Synthesis and fluorescent thermoresponsive properties of tetraphenylethylene-labeled methylcellulose[J]. Macromolecular Rapid Communications, 2021, 42(3): 2000497. |
91 | YUE Yiying, LUO Huiming, HAN Jingquan, et al. Assessing the effects of cellulose-inorganic nanofillers on thermo/pH-dual responsive hydrogels[J]. Applied Surface Science, 2020, 528: 146961. |
92 | Gilad DAVIDSON-ROZENFELD, STRICKER Lucas, SIMKE Julian, et al. Light-responsive arylazopyrazole-based hydrogels: their applications as shape-memory materials, self-healing matrices and controlled drug release systems[J]. Polymer Chemistry, 2019, 10(30): 4106-4115. |
93 | LI Ziyuan, Gilad DAVIDSON-ROZENFELD, Margarita VÁZQUEZ-GONZÁLEZ, et al. Multi-triggered supramolecular DNA/bipyridinium dithienylethene hydrogels driven by light, redox, and chemical stimuli for shape-memory and self-healing applications[J]. Journal of the American Chemical Society, 2018, 140(50): 17691-17701. |
94 | QIAN Chen, ASOH Taka-Aki, UYAMA Hiroshi. Sea cucumber mimicking bacterial cellulose composite hydrogel with ionic strength-sensitive mechanical adaptivity[J]. Chemical Communications, 2018, 54(80): 11320-11323. |
95 | SHI Xiangning, ZHENG Yudong, WANG Cai, et al. Dual stimulus responsive drug release under the interaction of pH value and pulsatile electric field for a bacterial cellulose/sodium alginate/multi-walled carbon nanotube hybrid hydrogel[J]. RSC Advances, 2015, 5(52): 41820-41829. |
96 | CHEN Zhen, LIU Jing, CHEN Yujie, et al. Multiple-stimuli-responsive and cellulose conductive ionic hydrogel for smart wearable devices and thermal actuators[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1353-1366. |
97 | ZHANG Chen, ZENG Guangming, HUANG Danlian, et al. Biochar for environmental management: mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts[J]. Chemical Engineering Journal, 2019, 373: 902-922. |
98 | SINHA Vibha, CHAKMA Sumedha. Advances in the preparation of hydrogel for wastewater treatment: a concise review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103295. |
99 | BAGHERI N, MANSOUR LAKOURAJ M, HASANTABAR V, et al. Biodegradable macro-porous CMC-polyaniline hydrogel: synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water[J]. Journal of Hazardous Materials, 2021, 403: 123631. |
100 | MITTAL Hemant, ALILI Ali AL, MORAJKAR Pranay P, et al. GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose—A versatile adsorbent for the treatment of dyes contaminated wastewater[J]. International Journal of Biological Macromolecules, 2021, 167: 1248-1261. |
101 | ZHOU Hongwei, JIN Zhaoyang, YUAN Ying, et al. Self-repairing flexible strain sensors based on nanocomposite hydrogels for whole-body monitoring[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592: 124587. |
102 | BAI Yan, ZHAO Weiwei, BI Shuaihang, et al. Preparation and application of cellulose gel in flexible supercapacitors[J]. Journal of Energy Storage, 2021, 42: 103058 |
103 | LIANG Qianqian, ZHANG Dong, JI Peng, et al. High-strength superstretchable helical bacterial cellulose fibers with a self-fiber-reinforced structure[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1545-1554. |
104 | KIM Dabum, GWON Goomin, LEE Gangyoon, et al. Surface-enhanced Raman scattering-active AuNR array cellulose films for multi-hazard detection[J]. Journal of Hazardous Materials, 2021, 402: 123505. |
105 | HAO S W, SHAO C Y, MENG L, et al. Tannic acid-silver dual catalysis induced rapid polymerization of conductive hydrogel sensors with excellent stretchability, self-adhesion, and strain-sensitivity properties[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56509-56521. |
106 | WANG Baojun, LI Jianmin, HOU Chengyi, et al. Stable hydrogel electrolytes for flexible and submarine-use Zn-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46005-46014. |
107 | ZHANG Xiaofang, ZHAO Jiangqi, XIA Tian, et al. Hollow polypyrrole/cellulose hydrogels for high-performance flexible supercapacitors[J]. Energy Storage Materials, 2020, 31: 135-145. |
108 | ZHENG Chunxiao, LU Kaiyue, LU Ya, et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion[J]. Carbohydrate Polymers, 2020, 250: 116905. |
109 | ZHAO Wen, QU Xinyu, XU Qian, et al. Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels[J]. Advanced Electronic Materials, 2020, 6(7): 2000267. |
110 | TONG Ruiping, CHEN Guangxue, PAN Danhong, et al. Ultrastretchable and antifreezing double-cross-linked cellulose ionic hydrogels with high strain sensitivity under a broad range of temperature[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14256-14265. |
[1] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[2] | ZHANG Tingting, PAN Dawei, JU Xiaojie, LIU Zhuang, XIE Rui, WANG Wei, CHU Liangyin. Fabrication and performance of Hg2+-responsive smart hydrogel grating detector [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4143-4152. |
[3] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[4] | FENG Wanqi, HANISHA·Bhahti , GE Yuxuan, ZHAO Jianbo. Preparation and properties of magnetic polyaspartic acid/polyacrylamide semi-interpenetrating hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3130-3137. |
[5] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[6] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[7] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
[8] | TANG Chunxia, LI Meng, WANG Yuxi, ZONG Yongzhong, FU Shaohai. Progress in structural design of functionalized cellulose nanomaterials for Cr(Ⅵ) removal [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 585-594. |
[9] | ZHANG Jie, WANG Xudong, YANG Yifei, REN Yue, CHEN Licheng. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372. |
[10] | WANG Zihang, LIANG Ruisheng, DENG Chaohe, WANG Jiayun. Preparation and atmosphere water harvesting performance of ionic gel composite adsorbent [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 389-396. |
[11] | HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854. |
[12] | YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084. |
[13] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[14] | ZHAN Xun, CHEN Jian, YANG Zhaozhe, WU Guomin, KONG Zhenwu, SHEN Kuizhong. Progress on superhydrophobic materials from nanocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4303-4313. |
[15] | QIU Yijuan, LIN Jiawei, QIN Jirui, WU Jiayin, LIN Fengcai, LU Beili, TANG Lirong, HUANG Biao. Double dynamic covalent bond crosslinked nano-cellulose conductive hydrogel for a flexible sensor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4406-4416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |