Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 3010-3021.DOI: 10.16085/j.issn.1000-6613.2021-1339
• Industrial catalysis • Previous Articles Next Articles
TAO Li(), YANG Qirong(), LI Zhaoying(), QI Hao, WANG Liwei, MA Xinru
Received:
2021-06-25
Revised:
2021-09-01
Online:
2022-06-21
Published:
2022-06-10
Contact:
YANG Qirong,LI Zhaoying
陶礼(), 杨启容(), 李昭莹(), 亓昊, 王力伟, 马欣如
通讯作者:
杨启容,李昭莹
作者简介:
陶礼(1997—),女,硕士研究生,研究方向为轮胎橡胶热解制氢。E-mail:基金资助:
CLC Number:
TAO Li, YANG Qirong, LI Zhaoying, QI Hao, WANG Liwei, MA Xinru. Mechanism of hydrogen production by catalytic pyrolysis of tire rubber based on molecular dynamics simulation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3010-3021.
陶礼, 杨启容, 李昭莹, 亓昊, 王力伟, 马欣如. 基于分子动力学模拟的轮胎橡胶催化热解制氢机理[J]. 化工进展, 2022, 41(6): 3010-3021.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1339
橡胶 | 主要成分分子式 | 单链模型 | 长链模型 |
---|---|---|---|
天然 橡胶 | 顺-1,4-聚异戊二烯 | 单链 | 长链 |
丁苯 橡胶 | 苯乙烯 1,3-丁二烯 | 单链 | 长链 |
顺丁 橡胶 | 顺-1,4-聚丁二烯 | 单链 | 长链 |
橡胶 | 主要成分分子式 | 单链模型 | 长链模型 |
---|---|---|---|
天然 橡胶 | 顺-1,4-聚异戊二烯 | 单链 | 长链 |
丁苯 橡胶 | 苯乙烯 1,3-丁二烯 | 单链 | 长链 |
顺丁 橡胶 | 顺-1,4-聚丁二烯 | 单链 | 长链 |
催化前路径→ 催化后路径 | 反应式 | 催化前能垒E /kJ·mol-1 | 催化后能垒E /kJ·mol-1 | 差值(前-后)?E /kJ·mol-1 |
---|---|---|---|---|
1→25 | CH2CHC(CH3)CH2 | 496.983 | 489.913 | 7.070 |
2→26 | CH2CHC(CH3)CH2 | 563.528 | 471.695 | 91.833 |
3→27 | CH2CHC(CH3)CH2 | 443.147 | 426.989 | 16.158 |
4→28 | CH2CHCHCH2 | 557.935 | 540.672 | 17.263 |
5→29 | CH2CHCHCH2 | 472.465 | 422.380 | 50.085 |
6→30 | CH2CHCHCH2 | 568.622 | 551.242 | 17.380 |
7→31 | C6H5CHCH2 | 607.728 | 588.120 | 19.608 |
8→32 | C6H5CHCH2 | 567.442 | 548.374 | 19.068 |
9→33 | (1) C6H5CHCH2 | 625.861 | 571.079 | 54.782 |
10→34 | (2) C6H5CHCH2 | 593.822 | 589.774 | 4.048 |
11→35 | (3) C6H5CHCH2 | 605.718 | 597.183 | 8.535 |
12→36 | C6H5CHCH2 | 575.395 | 555.164 | 20.231 |
催化前路径→ 催化后路径 | 反应式 | 催化前能垒E /kJ·mol-1 | 催化后能垒E /kJ·mol-1 | 差值(前-后)?E /kJ·mol-1 |
---|---|---|---|---|
1→25 | CH2CHC(CH3)CH2 | 496.983 | 489.913 | 7.070 |
2→26 | CH2CHC(CH3)CH2 | 563.528 | 471.695 | 91.833 |
3→27 | CH2CHC(CH3)CH2 | 443.147 | 426.989 | 16.158 |
4→28 | CH2CHCHCH2 | 557.935 | 540.672 | 17.263 |
5→29 | CH2CHCHCH2 | 472.465 | 422.380 | 50.085 |
6→30 | CH2CHCHCH2 | 568.622 | 551.242 | 17.380 |
7→31 | C6H5CHCH2 | 607.728 | 588.120 | 19.608 |
8→32 | C6H5CHCH2 | 567.442 | 548.374 | 19.068 |
9→33 | (1) C6H5CHCH2 | 625.861 | 571.079 | 54.782 |
10→34 | (2) C6H5CHCH2 | 593.822 | 589.774 | 4.048 |
11→35 | (3) C6H5CHCH2 | 605.718 | 597.183 | 8.535 |
12→36 | C6H5CHCH2 | 575.395 | 555.164 | 20.231 |
催化前路径→ 催化后路径 | 反应式 | 催化前能垒E /kJ·mol-1 | 催化后能垒E /kJ·mol-1 | 差值(前-后)?E /kJ·mol-1 |
---|---|---|---|---|
13→37 | CH2CHC(CH3)CH2+H· | 563.377 | 558.412 | 4.965 |
14→38 | CH2CHC(CH3)CH2+H· | 562.737 | 466.852 | 95.885 |
15→39 | CH2CHC(CH3)CH2+H· | 465.693 | 534.293 | -68.600 |
16→40 | CH2CHCHCH2+H· | 555.528 | 548.718 | 6.810 |
17→41 | CH2CHCHCH2+H· | 470.745 | 424.791 | 45.954 |
18→42 | CH2CHCHCH2+H· | 560.811 | 552.665 | 8.146 |
19→43 | C6H5CHCH2+H· | 605.986 | 596.668 | 9.318 |
20→44 | C6H5CHCH2+H· | 559.744 | 550.074 | 9.670 |
21→45 | (1) C6H5CHCH2+H· | 595.119 | 574.616 | 20.503 |
22→46 | (2) C6H5CHCH2+H· | 594.249 | 585.621 | 8.628 |
23→47 | (3) C6H5CHCH2+H· | 603.500 | 598.502 | 4.998 |
24→48 | C6H5CHCH2+H· | 569.472 | 555.126 | 14.346 |
催化前路径→ 催化后路径 | 反应式 | 催化前能垒E /kJ·mol-1 | 催化后能垒E /kJ·mol-1 | 差值(前-后)?E /kJ·mol-1 |
---|---|---|---|---|
13→37 | CH2CHC(CH3)CH2+H· | 563.377 | 558.412 | 4.965 |
14→38 | CH2CHC(CH3)CH2+H· | 562.737 | 466.852 | 95.885 |
15→39 | CH2CHC(CH3)CH2+H· | 465.693 | 534.293 | -68.600 |
16→40 | CH2CHCHCH2+H· | 555.528 | 548.718 | 6.810 |
17→41 | CH2CHCHCH2+H· | 470.745 | 424.791 | 45.954 |
18→42 | CH2CHCHCH2+H· | 560.811 | 552.665 | 8.146 |
19→43 | C6H5CHCH2+H· | 605.986 | 596.668 | 9.318 |
20→44 | C6H5CHCH2+H· | 559.744 | 550.074 | 9.670 |
21→45 | (1) C6H5CHCH2+H· | 595.119 | 574.616 | 20.503 |
22→46 | (2) C6H5CHCH2+H· | 594.249 | 585.621 | 8.628 |
23→47 | (3) C6H5CHCH2+H· | 603.500 | 598.502 | 4.998 |
24→48 | C6H5CHCH2+H· | 569.472 | 555.126 | 14.346 |
路径 | ZSM-5催化前 能垒E/kJ·mol-1 | ZSM-5催化后 能垒E/kJ·mol-1 | ZSM-5差值?E(前-后) /kJ·mol-1 | Ni/ZSM-5催化前 能垒E/kJ·mol-1 | Ni/ZSM-5催化后 能垒E/kJ·mol-1 | Ni/ZSM-5差值?E(前-后) /kJ·mol-1 |
---|---|---|---|---|---|---|
1 | 496.983 | 538.039 | -41.056 | 496.983 | 514.535 | -17.552 |
2 | 563.528 | 563.264 | 0.264 | 563.528 | 557.316 | 6.212 |
3 | 443.147 | 516.820 | -73.673 | 443.147 | 501.211 | -58.064 |
4 | 557.935 | 560.108 | -2.173 | 557.935 | 554.662 | 3.273 |
5 | 472.465 | 483.454 | -10.988 | 472.465 | 468.531 | 3.934 |
6 | 568.622 | 547.395 | 21.227 | 568.622 | 543.058 | 25.564 |
7 | 607.728 | 595.726 | 12.002 | 607.728 | 593.713 | 14.015 |
8 | 567.442 | 568.036 | -0.594 | 567.442 | 560.853 | 6.589 |
9 | 625.861 | 585.312 | 40.549 | 625.861 | 577.266 | 48.595 |
10 | 593.822 | 586.593 | 7.229 | 593.822 | 586.341 | 7.481 |
11 | 605.718 | 595.927 | 9.791 | 605.718 | 595.153 | 10.565 |
12 | 575.395 | 573.566 | 1.829 | 575.395 | 567.689 | 7.706 |
路径 | ZSM-5催化前 能垒E/kJ·mol-1 | ZSM-5催化后 能垒E/kJ·mol-1 | ZSM-5差值?E(前-后) /kJ·mol-1 | Ni/ZSM-5催化前 能垒E/kJ·mol-1 | Ni/ZSM-5催化后 能垒E/kJ·mol-1 | Ni/ZSM-5差值?E(前-后) /kJ·mol-1 |
---|---|---|---|---|---|---|
1 | 496.983 | 538.039 | -41.056 | 496.983 | 514.535 | -17.552 |
2 | 563.528 | 563.264 | 0.264 | 563.528 | 557.316 | 6.212 |
3 | 443.147 | 516.820 | -73.673 | 443.147 | 501.211 | -58.064 |
4 | 557.935 | 560.108 | -2.173 | 557.935 | 554.662 | 3.273 |
5 | 472.465 | 483.454 | -10.988 | 472.465 | 468.531 | 3.934 |
6 | 568.622 | 547.395 | 21.227 | 568.622 | 543.058 | 25.564 |
7 | 607.728 | 595.726 | 12.002 | 607.728 | 593.713 | 14.015 |
8 | 567.442 | 568.036 | -0.594 | 567.442 | 560.853 | 6.589 |
9 | 625.861 | 585.312 | 40.549 | 625.861 | 577.266 | 48.595 |
10 | 593.822 | 586.593 | 7.229 | 593.822 | 586.341 | 7.481 |
11 | 605.718 | 595.927 | 9.791 | 605.718 | 595.153 | 10.565 |
12 | 575.395 | 573.566 | 1.829 | 575.395 | 567.689 | 7.706 |
路径 | ZSM-5催化前 能垒E/kJ·mol-1 | ZSM-5催化后 能垒E/kJ·mol-1 | ZSM-5差值?E(前-后) /kJ·mol-1 | Ni/ZSM-5催化前 能垒E /kJ·mol-1 | Ni/ZSM-5催化后 能垒E /kJ·mol-1 | Ni/ZSM-5差值?E(前-后) /kJ·mol-1 |
---|---|---|---|---|---|---|
13 | 563.377 | 551.610 | 11.767 | 563.377 | 512.982 | 50.395 |
14 | 562.737 | 485.404 | 77.333 | 562.737 | 563.570 | -0.833 |
15 | 465.693 | 429.513 | 36.180 | 465.693 | 431.711 | 33.982 |
16 | 555.528 | 561.711 | -6.183 | 555.528 | 553.184 | 2.344 |
17 | 470.745 | 458.099 | 12.646 | 470.745 | 441.238 | 29.507 |
18 | 560.811 | 537.675 | 23.136 | 560.811 | 546.240 | 14.571 |
19 | 605.986 | 599.984 | 6.002 | 605.986 | 606.070 | -0.084 |
20 | 559.744 | 579.891 | -20.147 | 559.744 | 550.765 | 8.979 |
21 | 595.119 | 598.029 | -2.910 | 595.119 | 590.540 | 4.579 |
22 | 594.249 | 588.556 | 5.693 | 594.249 | 586.053 | 8.196 |
23 | 603.500 | 602.583 | 0.917 | 603.500 | 598.740 | 4.760 |
24 | 569.472 | 585.647 | -16.175 | 569.472 | 567.295 | 2.177 |
路径 | ZSM-5催化前 能垒E/kJ·mol-1 | ZSM-5催化后 能垒E/kJ·mol-1 | ZSM-5差值?E(前-后) /kJ·mol-1 | Ni/ZSM-5催化前 能垒E /kJ·mol-1 | Ni/ZSM-5催化后 能垒E /kJ·mol-1 | Ni/ZSM-5差值?E(前-后) /kJ·mol-1 |
---|---|---|---|---|---|---|
13 | 563.377 | 551.610 | 11.767 | 563.377 | 512.982 | 50.395 |
14 | 562.737 | 485.404 | 77.333 | 562.737 | 563.570 | -0.833 |
15 | 465.693 | 429.513 | 36.180 | 465.693 | 431.711 | 33.982 |
16 | 555.528 | 561.711 | -6.183 | 555.528 | 553.184 | 2.344 |
17 | 470.745 | 458.099 | 12.646 | 470.745 | 441.238 | 29.507 |
18 | 560.811 | 537.675 | 23.136 | 560.811 | 546.240 | 14.571 |
19 | 605.986 | 599.984 | 6.002 | 605.986 | 606.070 | -0.084 |
20 | 559.744 | 579.891 | -20.147 | 559.744 | 550.765 | 8.979 |
21 | 595.119 | 598.029 | -2.910 | 595.119 | 590.540 | 4.579 |
22 | 594.249 | 588.556 | 5.693 | 594.249 | 586.053 | 8.196 |
23 | 603.500 | 602.583 | 0.917 | 603.500 | 598.740 | 4.760 |
24 | 569.472 | 585.647 | -16.175 | 569.472 | 567.295 | 2.177 |
不同比例 (橡胶∶催化剂) | 1100K时热解情况 | 1500K时热解情况 |
---|---|---|
1∶0 | ||
5∶1 | ||
3∶1 | ||
1∶1 |
不同比例 (橡胶∶催化剂) | 1100K时热解情况 | 1500K时热解情况 |
---|---|---|
1∶0 | ||
5∶1 | ||
3∶1 | ||
1∶1 |
1 | 张立民, 李志学. 我国新能源经济发展现状分析[J]. 现代商业, 2021(7): 25-27. |
ZHANG Limin, LI Zhixue. Analysis of the present situation of the development of new energy economy in China[J]. Modern Business, 2021 (7): 25-27. | |
2 | LI G, ZHANG K, YANG B, et al. Life cycle analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification[J]. Energy, 2019, 174: 638-646. |
3 | TOUILI S, ALAMI MERROUNI A, HASSOUANI Y EL, et al. Analysis of the yield and production cost of large-scale electrolytic hydrogen from different solar technologies and under several Moroccan climate zones[J]. International Journal of Hydrogen Energy, 2020, 45(51): 26785-26799. |
4 | LI W C, REN X S, DING S M, et al. A multi-criterion decision making for sustainability assessment of hydrogen production technologies based on objective grey relational analysis[J]. International Journal of Hydrogen Energy, 2020, 45(59): 34385-34395. |
5 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
6 | 国家统计局. 2019年7—12月我国合成橡胶、轮胎和汽车产量[J]. 橡胶科技, 2020, 18(3): 178. |
National Bureau of Statistics. Output of synthetic rubber, tires and cars in China from July to December 2019[J]. Rubber Science and Technology, 2020, 18(3): 178. | |
7 | CHOI G G, OH S J, KIM J S, et al. Non-catalytic pyrolysis of scrap tires using a newly developed two-stage pyrolyzer for the production of a pyrolysis oil with a low sulfur content[J]. Applied Energy, 2016, 170: 140-147. |
8 | 狄伟强. 废轮胎热解炭特性及其对废轮胎催化性能研究[D]. 大连: 大连理工大学, 2019. |
DI Weiqiang. Study on the characteristics of waste tire pyrolysis char and its catalytic pyrolysis effect on waste tires[D]. Dalian: Dalian University of Technology, 2019. | |
9 | LI W P, WEI M M, LIU Y Q, et al. Catalysts evaluation for production of hydrogen gas and carbon nanotubes from the pyrolysis-catalysis of waste tyres[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19563-19572. |
10 | Williams P T, Brindle A J.Catalytic pyrolysis of tyres: influence of catalyst temperature[J]. Fuel, 2002, 81(18): 2425-2434. |
11 | YU J, LIU S, CARDOSO A, et al. Catalytic pyrolysis of rubbers and vulcanized rubbers using modified zeolites and mesoporous catalysts with Zn and Cu[J]. Energy, 2019, 188: 116117. |
12 | 李秉繁, 刘刚, 陈雷. 基于分子动力学模拟的CH4溶解对原油分子间作用的影响机制研究[J]. 化工学报, 2021, 72(3): 1253-1263. |
LI Bingfan, LIU Gang, CHEN Lei. Study on the influence mechanism of CH4 dissolution on the intermolecular interaction between crude oil molecules based on molecular dynamics simulation[J]. CIESC Journal, 2021, 72(3): 1253-1263. | |
13 | LIU Y L, DING J X, HAN K L. Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane[J]. Fuel, 2018, 217: 185-192. |
14 | 魏鑫. 天然橡胶热解气相产物生成机理研究[D]. 青岛: 青岛大学, 2019. |
WEI Xin. Study on the formation mechanism of gas phase products of natural rubber pyrolysis[D]. Qingdao: Qingdao University, 2019. | |
15 | YANG Q R, YU S P, ZHONG H W, et al. Gas products generation mechanism during co-pyrolysis of styrene-butadiene rubber and natural rubber[J]. Journal of Hazardous Materials, 2021, 401: 123302. |
16 | 于双鹏, 杨启容, 陶礼, 等. 基于分子动力学模拟的轮胎橡胶气相热解产物反应机理[J]. 化工进展, 2021, 40(6): 3119-3131. |
YU Shuangpeng, YANG Qirong, TAO Li, et al. Gas phase pyrolysis products of tire rubber based on molecular dynamics simulation[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3119-3131. | |
17 | 潘旗. 基于分子动力学模拟的变压器油纸绝缘老化特性基础研究[D]. 徐州: 中国矿业大学, 2020. |
PAN Qi. Basic research on aging characteristics of transformer oil paper insulation based on molecular dynamics simulation[D]. Xuzhou: China University of Mining and Technology, 2020. | |
18 | HU S D, SUN W G, FU J, et al. Initiation mechanisms and kinetic analysis of the isothermal decomposition of poly(α-methylstyrene): a ReaxFF molecular dynamics study[J]. RSC Advances, 2018, 8(7): 3423-3432. |
19 | KWON H, LELE A, ZHU J Q, et al. ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels[J]. Fuel, 2020, 279: 118548. |
20 | 张贻亮. 原子-键电负性均衡方法及其在理论化学中的应用[D]. 长春: 吉林大学, 2002. |
ZHANG Yiliang. Atom-bond electronegativity equalization method and its application in theoretical chemistry[D]. Changchun: Jilin University, 2002. | |
21 | ZHENG M, WANG Z, LI X X, et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics[J]. Fuel, 2016, 177: 130-141. |
22 | 杜鸟锋, 甯红波, 李泽荣, 等. 1,3-丁二烯热裂解的动力学计算与模型研究[J]. 物理化学学报, 2016, 32(2): 453-464. |
DU Niaofeng, NING Hongbo, LI Zerong, et al. Kinetic calculation and modeling study of 1,3-butadiene pyrolysis[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 453-464. | |
23 | 徐宗平, 郭庆民. 废轮胎热解回收中的废气综合利用[J]. 中国轮胎资源综合利用, 2018(11): 36-39. |
XU Zongping, GUO Qingmin. The comprehensive utilization of waste gas in waste tire pyrolysis recycling[J]. China Tire Resources Recycling, 2018(11): 36-39. | |
24 | 张会亮, 范晓旭, 刘彦丰, 等. 块状废轮胎固定床热解特性实验研究[J]. 可再生能源, 2015, 33(1): 149-153. |
ZHANG Huiliang, FAN Xiaoxu, LIU Yanfeng, et al. Experimental study on pyrolysis of blocky tires in a fixed-bed reactor[J]. Renewable Energy Resources, 2015, 33(1): 149-153. | |
25 | 张冰, 付琦, 梁畅. 废轮胎橡胶热解技术研究进展[J]. 橡塑技术与装备, 2018, 44(15): 19-23. |
ZHANG Bing, FU Qi, LIANG Chang. Research progress on waste tire rubber pyrolysis technology[J]. China Rubber/Plastics Technology and Equipment, 2018, 44(15): 19-23. | |
26 | ELBABA I F, WILLIAMS P T. Two stage pyrolysis-catalytic gasification of waste tyres: influence of process parameters[J]. Applied Catalysis B: Environmental, 2012, 125: 136-143. |
27 | ELBABA I F, WU C F, WILLIAMS P T. Hydrogen production from the pyrolysis-gasification of waste tyres with a nickel/cerium catalyst[J]. International Journal of Hydrogen Energy, 2011, 36(11): 6628-6637. |
28 | ZHANG Y S, WU C F, NAHIL M A, et al. Pyrolysis-catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen[J]. Energy & Fuels, 2015, 29(5): 3328-3334. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[3] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[4] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[5] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[6] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[7] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[8] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
[9] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[10] | SUN Xianhang, REN Zhu, ZHANG Guojun, SUN Yuan, FAN Kaifeng, HUANG Weiqiu. Study on the desorption mechanism of toluene in activated carbon under supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 631-636. |
[11] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[12] | LI Yufeng, WANG Shaoqing, ZHANG Andong, BI Dongmei, LI Zhihe, GAO Liang, WAN Zhen. Preparation of catalytic porous ceramic balls and catalytic pyrolysis of corn stover [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3597-3607. |
[13] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[14] | ZHANG Xuan, FAN Xinye, WU Zhenyu, ZHENG Lijun. Hydrogen energy supply chain cost analysis and suggestions [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371. |
[15] | ZHANG Shizhong, CHEN Zhanxiu, LIU Fengrui, PANG Runyu, WANG Qing. Molecular dynamics simulation of liquid boiling on nanostructured surfaces [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2311-2321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |