1 |
常东亮, 哈成勇. 松香产品中重质松节油成分的气相色谱/质谱法分析[J]. 分析化学, 1999, 27(4): 423-426.
|
|
CHANG Dongliang, Chengyong HA. Determination of the heavy turpentine in rosin with gas chromatography/mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 1999, 27(4): 423-426.
|
2 |
DENICOURT-NOWICKI, RAUCHDI, ALI, et al. Catalytic oxidation processes for the upgrading of terpenes: state-of-the-art and future trends[J]. Catalysts, 2019, 9(11): 893.
|
3 |
MICHEL T, BETZ D, COKOJA M, et al. Epoxidation of α-pinene catalyzed by methyltrioxorhenium(Ⅶ): influence of additives, oxidants and solvents[J]. Journal of Molecular Catalysis A: Chemical, 2011, 340(1/2): 9-14.
|
4 |
宋展, 高鑫, 吴冕, 等. 细胞色素P450酶的结构、功能与应用研究进展[J]. 微生物学通报, 2020, 47(7): 2245-2254.
|
|
SONG Zhan, GAO Xin, WU Mian, et al. Structure, function, and application of cytochrome P450 enzymes[J]. Microbiology China, 2020, 47(7): 2245-2254.
|
5 |
康辉, 李红飞, 郝晓霞. 葡萄糖氧化酶简介及其应用[J]. 农业工程技术(农产品加工业), 2008(1): 16-19.
|
|
KANG Hui, LI Hongfei, HAO Xiaoxia. Brief introduction of glucose oxidase and its application[J]. Agriculture Engineering Technology (Agricultural Product Processing Industry), 2008(1): 16-19.
|
6 |
赵天涛, 高静, 李伟杰. 南极假丝酵母脂肪酶B的催化机理及应用前景[J]. 分子催化, 2005, 19(2): 155-160.
|
|
ZHAO Tiantao, GAO Jing, LI Weijie. Catalytic mechanism and application prospect of Candida antarctic lipase B [J]. Journal of Molecular Catalysis, 2005, 19(2): 155-160.
|
7 |
MELCHIORS M S, VIEIRA T Y, PEREIRA L P S, et al. Epoxidation of (R)-(+)-limonene to 1, 2-limonene oxide mediated by low-cost immobilized Candida antarctica lipase fraction B[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13918-13925.
|
8 |
MEYER J, HOLTMANN D, ANSORGE-SCHUMACHER M B, et al. Development of a continuous process for the lipase-mediated synthesis of peracids[J]. Biochemical Engineering Journal, 2017, 118: 34-40.
|
9 |
TUDORACHE M, GHEORGHE A, VIANA A S, et al. Biocatalytic epoxidation of α-pinene to oxy-derivatives over cross-linked lipase aggregates[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 9-15.
|
10 |
SILVA J M R DA, NASCIMENTO M D G. Chemoenzymatic epoxidation of citronellol catalyzed by lipases[J]. Process Biochemistry, 2012, 47(3): 517-522.
|
11 |
BHALERAO M S, KULKARNI V M, PATWARDHAN A V. Ultrasound-assisted chemoenzymatic epoxidation of soybean oil by using lipase as biocatalyst[J]. Ultrasonics Sonochemistry, 2018, 40: 912-920.
|
12 |
ZHANG Y Y, JIANG W W, LV K, et al. Optimization of chemoenzymatic Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone using response surface methodology[J]. Biotechnology Progress, 2020, 36(1): e2901.
|
13 |
MEYER-WAßEWITZ J, HOLTMANN D, ANSORGE-SCHUMACHER M B, et al. An organic-single-phase CSTR process for the chemo-enzymatic epoxidation of α-pinene enables high selectivity and productivity[J]. Biochemical Engineering Journal, 2017, 126: 68-77.
|
14 |
周鹏飞. 酯酶/脂肪酶在天然低共熔溶剂中催化环氧化反应的研究[D]. 广州: 华南理工大学, 2017.
|
|
ZHOU Pengfei. Study on chemoenzymatic reactions with esterases and lipases in natural deep eutectic solvents[D]. Guangzhou: South China University of Technology, 2017.
|
15 |
PÄTZOLD M, SIEBENHALLER S, KARA S, et al. Deep eutectic solvents as efficient solvents in biocatalysis[J]. Trends in Biotechnology, 2019, 37(9): 943-959.
|
16 |
ZHAO H. What do we learn from enzyme behaviors in organic solvents? —Structural functionalization of ionic liquids for enzyme activation and stabilization[J]. Biotechnology Advances, 2020, 45: 107638.
|
17 |
ZHAO H, KANPADEE N, JINDARAT C. Ether-functionalized ionic liquids for nonaqueous biocatalysis: effect of different cation cores[J]. Process Biochemistry, 2019, 81: 104-112.
|
18 |
MADEIRA LAU R, RANTWIJK F VAN, SEDDON K R, et al. Lipase-catalyzed reactions in ionic liquids[J]. Organic Letters, 2000, 2(26): 4189-4191.
|
19 |
PARK H J, PARK K, YOO Y J. Understanding the effect of tert-butanol on Candida antarctica lipase B using molecular dynamics simulations[J]. Molecular Simulation, 2013, 39(8): 653-659.
|
20 |
HOFMANN B, TÖLZER S, PELLETIER I, et al. Structural investigation of the cofactor-free chloroperoxidases[J]. Journal of Molecular Biology, 1998, 279(4): 889-900.
|
21 |
XU Y, KHAW N R B J, LI Z. Efficient epoxidation of alkenes with hydrogen peroxide, lactone, and lipase[J]. Green Chemistry, 2009, 11(12): 2047.
|
22 |
SKOURIDOU V, STAMATIS H, KOLISIS F N. A study on the process of lipase-catalyzed synthesis of α-pinene oxide in organic solvents[J]. Biocatalysis and Biotransformation, 2003, 21(6): 285-290.
|
23 |
AOUF C, DURAND E, LECOMTE J, et al. The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds[J]. Green Chemistry, 2014, 16(4): 1740-1754.
|
24 |
IKHUORIA E U, OBULEKE R O, OKIEIMEN F E. Studies on the kinetics of epoxidation of the methyl esters of parkia biglobosa seed oil[J]. Journal of Macromolecular Science, Part A, 2007, 44(2): 235-238.
|
25 |
ANKUDEY E G, OLIVO H F, PEEPLES T L. Lipase-mediated epoxidation utilizing urea–hydrogen peroxide in ethyl acetate[J]. Green Chemistry, 2006, 8(10): 923-926.
|
26 |
SKOURIDOU V, STAMATIS H, KOLISIS F N. Lipase-mediated epoxidation of α-pinene[J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 21(1/2): 67-69.
|