Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 2993-3001.DOI: 10.16085/j.issn.1000-6613.2021-1467
• Industrial catalysis • Previous Articles Next Articles
LYU Jieqiong(), XIE Hui, GAO Yongping, LIAN Lili, WANG Xiyue, ZHANG Hao, GAO Wenxiu(), LOU Dawei()
Received:
2021-07-12
Revised:
2021-10-06
Online:
2022-06-21
Published:
2022-06-10
Contact:
GAO Wenxiu,LOU Dawei
吕杰琼(), 谢晖, 高永平, 连丽丽, 王希越, 张浩, 高文秀(), 娄大伟()
通讯作者:
高文秀,娄大伟
作者简介:
吕杰琼(1997—),女,硕士研究生,研究方向为催化化学。E-mail:基金资助:
CLC Number:
LYU Jieqiong, XIE Hui, GAO Yongping, LIAN Lili, WANG Xiyue, ZHANG Hao, GAO Wenxiu, LOU Dawei. Application of nitrogen-rich covalent organic framework material COF-MC catalyzing Knoevenagel condensation reaction[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2993-3001.
吕杰琼, 谢晖, 高永平, 连丽丽, 王希越, 张浩, 高文秀, 娄大伟. 富氮类共价有机骨架材料COF-MC催化Knoevenagel缩合反应的应用[J]. 化工进展, 2022, 41(6): 2993-3001.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1467
元素质量分数/% | 不同种类氮质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|
C | O | S | N | —N | —NH— | —NH2 | π-π* 卫星峰 | |
35.96 | 3.71 | 5.10 | 55.23 | 48.23 | 39.24 | 6.72 | 5.81 |
元素质量分数/% | 不同种类氮质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|
C | O | S | N | —N | —NH— | —NH2 | π-π* 卫星峰 | |
35.96 | 3.71 | 5.10 | 55.23 | 48.23 | 39.24 | 6.72 | 5.81 |
序号 | 催化剂 | n(苯甲醛)∶n(丙二腈) | 转化率 /% | 选择性 /% | TOF×10-3 /mol·g-1·h-1 |
---|---|---|---|---|---|
1 | 无 | 1∶1 | 7 | >99.9 | |
2 | COF-MC | 1∶1 | 92 | >99.9 | 92 |
3 | COF-MC | 1∶1.5 | 100 | >99.9 | 100 |
序号 | 催化剂 | n(苯甲醛)∶n(丙二腈) | 转化率 /% | 选择性 /% | TOF×10-3 /mol·g-1·h-1 |
---|---|---|---|---|---|
1 | 无 | 1∶1 | 7 | >99.9 | |
2 | COF-MC | 1∶1 | 92 | >99.9 | 92 |
3 | COF-MC | 1∶1.5 | 100 | >99.9 | 100 |
序号 | 催化剂用量/mg | 转化率/% | 选择性/% | TOF |
---|---|---|---|---|
1 | 50 | 100 | >99.9 | 100 |
2 | 40 | 100 | >99.9 | 125 |
3 | 30 | 99 | >99.9 | 163 |
4 | 20 | 98 | >99.9 | 242 |
5 | 10 | 80 | >99.9 | 402 |
序号 | 催化剂用量/mg | 转化率/% | 选择性/% | TOF |
---|---|---|---|---|
1 | 50 | 100 | >99.9 | 100 |
2 | 40 | 100 | >99.9 | 125 |
3 | 30 | 99 | >99.9 | 163 |
4 | 20 | 98 | >99.9 | 242 |
5 | 10 | 80 | >99.9 | 402 |
序号 | 温度/℃ | 时间/h | 转化率/% | 选择性/% | TOF×10-3/mol·g-1·h-1 |
---|---|---|---|---|---|
1 | 60 | 2 | 79 | >99.9 | 196 |
2 | 70 | 2 | 95 | >99.9 | 238 |
3 | 80 | 2 | 98 | >99.9 | 244 |
4 | 90 | 2 | 99 | >99.9 | 248 |
5 | 80 | 0.5 | 61 | >99.9 | 610 |
6 | 80 | 1 | 75 | >99.9 | 375 |
7 | 80 | 1.5 | 94 | >99.9 | 313 |
8 | 80 | 2.5 | 98 | >99.9 | 196 |
序号 | 温度/℃ | 时间/h | 转化率/% | 选择性/% | TOF×10-3/mol·g-1·h-1 |
---|---|---|---|---|---|
1 | 60 | 2 | 79 | >99.9 | 196 |
2 | 70 | 2 | 95 | >99.9 | 238 |
3 | 80 | 2 | 98 | >99.9 | 244 |
4 | 90 | 2 | 99 | >99.9 | 248 |
5 | 80 | 0.5 | 61 | >99.9 | 610 |
6 | 80 | 1 | 75 | >99.9 | 375 |
7 | 80 | 1.5 | 94 | >99.9 | 313 |
8 | 80 | 2.5 | 98 | >99.9 | 196 |
序号 | 催化剂 | 溶剂 | 温度/℃ | 时间/h | 产率/% | TOF×10-3/mol·g-1·h-1 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | COF-MC | 无 | 80 | 2 | 98 | 244 | 本文 |
2 | COF-HNU14 | 无 | 25 | 5 | 99 | 50 | [ |
3 | A2B2-Pro-COF | 甲苯/H2O | 60 | 3 | 81 | 27 | [ |
4 | COF-366-R | 甲苯 | 60 | 6 | 81 | 25 | [ |
5 | GO/COF | 无 | 室温 | 1/6 | 98 | 392 | [ |
6 | Co-MOF/COF | 无 | 25 | 1/6 | 93 | 372 | [ |
7 | Zn-MOF/COF | 无 | 25 | 1/6 | 99 | 396 | [ |
8 | NC-700 | H2O/乙醇 | 40 | 1 | > 99 | 50 | [ |
9 | 壳聚糖 | 乙醇 | 40 | 6 | > 99 | 7 | [ |
10 | N-GO-1.00 | CH3CN | 40 | 4 | 96.5 | 24 | [ |
11 | Cyt@SBA-15 | 乙醇 | 室温 | 1 | 99 | 99 | [ |
12 | UiO-66-NH-RNH2 | 甲苯 | 室温 | 2 | 97 | 46 | [ |
序号 | 催化剂 | 溶剂 | 温度/℃ | 时间/h | 产率/% | TOF×10-3/mol·g-1·h-1 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | COF-MC | 无 | 80 | 2 | 98 | 244 | 本文 |
2 | COF-HNU14 | 无 | 25 | 5 | 99 | 50 | [ |
3 | A2B2-Pro-COF | 甲苯/H2O | 60 | 3 | 81 | 27 | [ |
4 | COF-366-R | 甲苯 | 60 | 6 | 81 | 25 | [ |
5 | GO/COF | 无 | 室温 | 1/6 | 98 | 392 | [ |
6 | Co-MOF/COF | 无 | 25 | 1/6 | 93 | 372 | [ |
7 | Zn-MOF/COF | 无 | 25 | 1/6 | 99 | 396 | [ |
8 | NC-700 | H2O/乙醇 | 40 | 1 | > 99 | 50 | [ |
9 | 壳聚糖 | 乙醇 | 40 | 6 | > 99 | 7 | [ |
10 | N-GO-1.00 | CH3CN | 40 | 4 | 96.5 | 24 | [ |
11 | Cyt@SBA-15 | 乙醇 | 室温 | 1 | 99 | 99 | [ |
12 | UiO-66-NH-RNH2 | 甲苯 | 室温 | 2 | 97 | 46 | [ |
1 | APPATURI J N, PULINGAM T, RAJABATHAR J R, et al. Acid-base bifunctional SBA-15 as an active and selective catalyst for synthesis of ethyl α-cyanocinnamate via Knoevenagel condensation[J]. Microporous and Mesoporous Materials, 2021, 320: 111091. |
2 | PATEL D, VITHALANI R, MODI C K. Highly efficient FeNP-embedded hybrid bifunctional reduced graphene oxide for Knoevenagel condensation with active methylene compounds[J]. New Journal of Chemistry, 2020, 44(7): 2868-2881. |
3 | 陈琳, 谢蓉蓉, 关丽, 等. 苯并-α-吡喃酮类生物活性物质的合成[J]. 化工进展, 2014, 33(8): 2160-2164. |
CHEN Lin, XIE Rongrong, GUAN Li, et al. Synthesis of some biologically active coumarins[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2160-2164. | |
4 | YANG Y, WANG D, JIANG P F, et al. Structure-induced Lewis-base Ga4B2O9 and its superior performance in Knoevenagel condensation reaction[J]. Molecular Catalysis, 2020, 490: 110914. |
5 | RUBAN S M, SATHISH C I, RAMADASS K, et al. Ordered mesoporous carbon nitrides with tuneable nitrogen contents and basicity for Knoevenagel condensation[J]. ChemCatChem, 2021, 13(1): 468-474. |
6 | 高朋召, 吴迪, 郑航博, 等. 有机胺改性对ZIF-8催化Knoevenagel缩合反应活性的影响[J]. 湖南大学学报(自然科学版), 2020, 47(8): 124-132. |
GAO Pengzhao, WU Di, ZHENG Hangbo, et al. Effect of amine modification on catalytic activity of ZIF-8 in Knoevenagel condensation reaction[J]. Journal of Hunan University (Natural Sciences), 2020, 47(8): 124-132. | |
7 | 颜世强, 郭伟, 王文笙, 等. 锌-脯氨酸复合物催化的水相Knoevenagel缩合[J]. 有机化学, 2019, 39(5): 1469-1474. |
YAN Shiqiang, GUO Wei, WANG Wensheng, et al. Zinc-proline complex catalyzed Knoevenagel condensation in water[J]. Chinese Journal of Organic Chemistry, 2019, 39(5): 1469-1474. | |
8 | ŞEN B, AKDERE E H, ŞAVK A, et al. A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile[J]. Applied Catalysis B: Environmental, 2018, 225: 148-153. |
9 | JOHARIAN M, MORSALI A, AZHDARI TEHRANI A, et al. Water-stable fluorinated metal–organic frameworks (F-MOFs) with hydrophobic properties as efficient and highly active heterogeneous catalysts in aqueous solution[J]. Green Chemistry, 2018, 20(23): 5336-5345. |
10 | BAHUGUNA A, KUMAR A, CHHABRA T, et al. Potassium-functionalized graphitic carbon nitride supported on reduced graphene oxide as a sustainable catalyst for Knoevenagel condensation[J]. ACS Applied Nano Materials, 2018, 1(12): 6711-6723. |
11 | 李航, 付海, 班大明, 等. 蒙脱土负载KF催化Knoevenagel缩合反应[J]. 福建师范大学学报(自然科学版), 2019, 35(4): 37-43. |
LI Hang, FU Hai, BAN Daming, et al. Montmorillonite loading KF catalyzed Knoevenagel condensation reaction[J]. Journal of Fujian Normal University (Natural Science Edition), 2019, 35(4): 37-43. | |
12 | 李琳琳, 龚维, 付海, 等. 介孔分子筛KF-SBA-15的制备及其催化Knoevenagel反应[J]. 化学工业与工程, 2020, 37(3): 17-22. |
LI Linlin, GONG Wei, FU Hai,et al. Preparation of KF-SBA-15 and its catalytic Knoevenagel reaction[J]. Chemical Industry and Engineering, 2020, 37(3): 17-22. | |
13 | TANGALE N P, SONAR S K, NIPHADKAR P S, et al. Hierarchical K/LTL zeolites: synthesis by alkali treatment, characterization and catalytic performance in Knoevenagel condensation reaction[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 128-136. |
14 | COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
15 | 刘祎, 汪明旺, 吕宏凌, 等. 共价有机骨架聚合物功能膜制备方法的研究进展[J]. 化工进展, 2021, 40(8): 4360-4370. |
LIU Yi, WANG Mingwang, Hongling LYU, et al. Research progress in the preparation method of covalent organic framework polymers (COFs) functional membranes[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4360-4370. | |
16 | 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581. |
ZHANG Anrui, AI Yuejie. Structure control of covalent organic frameworks(COFs) and their applications in environmental chemistry[J]. Progress in Chemistry, 2020, 32(10): 1564-1581. | |
17 | WU X C, WANG B W, YANG Z Q, et al. Novel imine-linked covalent organic frameworks: preparation, characterization and application[J]. Journal of Materials Chemistry A, 2019, 7(10): 5650-5655. |
18 | MONEHZADEH F, RAFIEE Z. Application of GO/COF as a novel, efficient and recoverable catalyst in the Knoevenagel reaction[J]. Applied Organometallic Chemistry, 2020, 34(6): e5631. |
19 | APPATURI J N, RATTI R, PHOON B L, et al. A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation[J]. Dalton Transactions, 2021, 50(13): 4445-4469. |
20 | QI S C, WU J K, LU J, et al. Underlying mechanism of CO2 adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO2 chiefly through acid–base interaction?[J]. Journal of Materials Chemistry A, 2019, 7(30): 17842-17853. |
21 | 焦莉, 徐金妹, 张秋亚, 等. 氨基修饰片状氮化碳的制备及光催化性能[J]. 化工进展, 2020, 39(5): 1866-1874. |
JIAO Li, XU Jinmei, ZHANG Qiuya, et al. Preparation and photocatalytic activity of amino-modified sheet-like carbon nitride[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1866-1874. | |
22 | WANG Z Z, LYU P, HU Y, et al. Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 207-214. |
23 | HU X W, LONG Y, FAN M Y, et al. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis[J]. Applied Catalysis B: Environmental, 2019, 244: 25-35. |
24 | BHUNIA M K, MELISSEN S, PARIDA M R, et al. Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity[J]. Chemistry of Materials, 2015, 27(24): 8237-8247. |
25 | WANG H F, WANG C Y, YANG Y F, et al. H3PW12O40 /mpg-C3N4 as an efficient and reusable bifunctional catalyst in one-pot oxidation–Knoevenagel condensation tandem reaction[J]. Catalysis Science & Technology, 2017, 7(2): 405-417. |
26 | LIU H H, CHEN D L, WANG Z Q, et al. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance[J]. Applied Catalysis B: Environmental, 2017, 203: 300-313. |
27 | HUA S X, QU D, AN L, et al. Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route[J]. Applied Catalysis B: Environmental, 2019, 240: 253-261. |
28 | CHAUDHARY M, SINGH L, REKHA P, et al. Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine[J]. Chemical Engineering Journal, 2019, 378: 122236. |
29 | ZHAO Y L, ZHAO Y, QIU J K, et al. Facile grafting of imidazolium salt in covalent organic frameworks with enhanced catalytic activity for CO2 fixation and the Knoevenagel reaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18413-18419. |
30 | HAO W J, CHEN D, LI Y S, et al. Facile synthesis of porphyrin based covalent organic frameworks via an A2B2 monomer for highly efficient heterogeneous catalysis[J]. Chemistry of Materials, 2019, 31(19): 8100-8105. |
31 | HU J Y, ZANCA F, MCMANUS G J, et al. Catalyst-enabled in situ linkage reduction in imine covalent organic frameworks[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21740-21747. |
32 | RAHMATI E, RAFIEE Z. Synthesis of Co-MOF/COF nanocomposite: application as a powerful and recoverable catalyst in the Knoevenagel reaction[J]. Journal of Porous Materials, 2021, 28(1): 19-27. |
33 | RAFIEE Z. Fabrication of efficient Zn-MOF/COF catalyst for the Knoevenagel condensation reaction[J]. Journal of the Iranian Chemical Society, 2021, 18(10): 2657-2664. |
34 | SAKTHIVEL B, DHAKSHINAMOORTHY A. Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction[J]. Journal of Colloid and Interface Science, 2017, 485: 75-80. |
35 | XUE B, ZHU J G, LIU N, et al. Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for Knoevenagel condensation reaction[J]. Catalysis Communications, 2015, 64: 105-109. |
36 | RAJABI F, FAYYAZ F, LUQUE R. Cytosine-functionalized SBA-15 mesoporous nanomaterials: synthesis, characterization and catalytic applications[J]. Microporous and Mesoporous Materials, 2017, 253: 64-70. |
37 | LUAN Y, QI Y, GAO H Y, et al. A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction[J]. Journal of Materials Chemistry A, 2015, 3(33): 17320-17331. |
38 | ZHANG L N, WANG H, SHEN W Z, et al. Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations[J]. Journal of Catalysis, 2016, 344: 293-302. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |