Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3143-3152.DOI: 10.16085/j.issn.1000-6613.2018-1911
• Industrial catalysis • Previous Articles Next Articles
Haoke JI(),Xuejie ZHANG,Hao WANG,Qianwen ZHU,Yebin ZHOU,Chunshan LU(),Xiaonian LI
Received:
2018-09-21
Online:
2019-07-05
Published:
2019-07-05
Contact:
Chunshan LU
季豪克(),张雪洁,王昊,朱倩文,周烨彬,卢春山(),李小年
通讯作者:
卢春山
作者简介:
季豪克(1993—),男,硕士研究生,研究方向为炭材料及金属催化剂和催化工程应用。E-mail:<email>jhkyx0@163.com</email>。
基金资助:
CLC Number:
Haoke JI, Xuejie ZHANG, Hao WANG, Qianwen ZHU, Yebin ZHOU, Chunshan LU, Xiaonian LI. Research progress of the porous carbon nanospheres and their supported metal catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3143-3152.
季豪克, 张雪洁, 王昊, 朱倩文, 周烨彬, 卢春山, 李小年. 多孔碳纳米球及其负载金属催化剂的研究进展[J]. 化工进展, 2019, 38(07): 3143-3152.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1911
催化剂结构 | 催化剂名称 | 催化剂组成 | 催化性能 | 参考文献 |
---|---|---|---|---|
多孔实心碳纳米球载金属催化剂 | Pd/CSs | Pd颗粒(粒径约5.4nm)均匀分布在碳球(约120nm)外表面 | 温和反应条件下催化硝基芳香化合物加氢反应的转化率以及选择性均为100% | [ |
M/N-MCNSs | 金属颗粒M(Au、 Pt、Rh、Ru、 Ag、 Pd 和 Ir)均匀分布在氮掺杂碳球的表面和孔道 | 室温或较高的温度下催化苯甲醛加氢反应中,羰基还原的选择性为100% | [ | |
多孔中空碳纳米球载金属催化剂 | Pd/CSs | Pd颗粒(粒径4~15nm)均匀分布在碳球外表面 | 在硝基苯液相催化还原反应中表现出高活性 | [ |
Pt/N-HCNSs | Pt颗粒(粒径约2.8 nm)均匀分布在中空碳球的内和外表面,碳壳厚度约为50nm | 肉桂醛催化加氢的选择性为99.9%,转化率在催化剂循环套用12次后未下降 | [ | |
Pd/B-HCSs | Pd颗粒(粒径约4.7 nm)均匀分布在中空碳球的内和外表面 | 催化苯甲醇无溶剂氧化反应,转化率为100%,选择性为99% | [ | |
多孔核壳碳纳米球载金属催化剂 | Pd@C | Pd颗粒(粒径约10.6nm)表面包裹碳层的实心核壳结构 | 室温下催化硝基苯液相还原反应中表现高转化率 | [ |
Au@C | Au颗粒(粒径约15nm)在中空碳球(约为150nm)内部自由活动,碳壳厚度约为18nm | 在2-硝基苯酚液相催化还原反应中表现出高活性和高稳定性 | [ |
催化剂结构 | 催化剂名称 | 催化剂组成 | 催化性能 | 参考文献 |
---|---|---|---|---|
多孔实心碳纳米球载金属催化剂 | Pd/CSs | Pd颗粒(粒径约5.4nm)均匀分布在碳球(约120nm)外表面 | 温和反应条件下催化硝基芳香化合物加氢反应的转化率以及选择性均为100% | [ |
M/N-MCNSs | 金属颗粒M(Au、 Pt、Rh、Ru、 Ag、 Pd 和 Ir)均匀分布在氮掺杂碳球的表面和孔道 | 室温或较高的温度下催化苯甲醛加氢反应中,羰基还原的选择性为100% | [ | |
多孔中空碳纳米球载金属催化剂 | Pd/CSs | Pd颗粒(粒径4~15nm)均匀分布在碳球外表面 | 在硝基苯液相催化还原反应中表现出高活性 | [ |
Pt/N-HCNSs | Pt颗粒(粒径约2.8 nm)均匀分布在中空碳球的内和外表面,碳壳厚度约为50nm | 肉桂醛催化加氢的选择性为99.9%,转化率在催化剂循环套用12次后未下降 | [ | |
Pd/B-HCSs | Pd颗粒(粒径约4.7 nm)均匀分布在中空碳球的内和外表面 | 催化苯甲醇无溶剂氧化反应,转化率为100%,选择性为99% | [ | |
多孔核壳碳纳米球载金属催化剂 | Pd@C | Pd颗粒(粒径约10.6nm)表面包裹碳层的实心核壳结构 | 室温下催化硝基苯液相还原反应中表现高转化率 | [ |
Au@C | Au颗粒(粒径约15nm)在中空碳球(约为150nm)内部自由活动,碳壳厚度约为18nm | 在2-硝基苯酚液相催化还原反应中表现出高活性和高稳定性 | [ |
1 | RADZUAN N A M , ZAKARIA M Y , SULONG A B , et al . The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites[J]. Composites Part B: Engineering, 2017, 110: 153-160. |
2 | GHOLINEJAD M , BAHRAMI M , NÁJERA C . A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: application as a recoverable catalyst for Suzuki reaction in water[J]. Molecular Catalysis, 2017, 433: 12-19. |
3 | YANG N J , FOORD J S , JIANG X . Diamond electrochemistry at the nanoscale: a review[J]. Carbon, 2016, 99: 90-110. |
4 | ABRAHAM J , VASU K S , WILLIAMS C D , et al . Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. |
5 | GU W T , YUSHIN G . Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3(5): 424-473. |
6 | HOU S , WANG M , XU X , et al . Nitrogen-doped carbon spheres: a new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor[J]. Journal of Colloid and Interface Science, 2017, 491: 161-166. |
7 | MAI W, SUN B , CHEN L , et al . Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres[J]. Journal of the American Chemical Society, 2015, 137(41): 13256-13259. |
8 | LONG Y , LIU Y S , ZHAO Z M , et al . Distinctive morphology effects of porous-spherical / yolk-shell / hollow Pd-nitrogen-doped-carbon spheres catalyst for catalytic reduction of 4-nitrophenol[J]. Journal of Colloid and Interface Science, 2017, 496: 465-473. |
9 | LIU M X , WANG X , ZHU D Z , et al . Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage[J]. Chemical Engineering Journal, 2017, 308: 240-247. |
10 | WANG G H , CHEN K , ENGELHARDT J , et al . Scalable one-pot synthesis of yolk-shell carbon nanospheres with yolk-supported Pd nanoparticles for size-selective catalysis[J]. Chemistry of Materials, 2018, 30: 2483-2487. |
11 | YANG Q , ZHANG J , ZHANG L , et al . Ruthenium nanoparticles on colloidal carbon spheres: an efficient catalyst for hydrogenation of ethyl lactate in aqueous phase[J]. Catalysis Communications, 2013, 40: 37-41. |
12 | NONGWE I , RIVAT V , MEIJBOOM R , et al . Pt supported nitrogen doped hollow carbon spheres for the catalysed reduction of cinnamaldehyde[J]. Applied Catalysis A: General, 2016, 517: 30-38. |
13 | LIU R , MAHURIN S M , LI C , et al . Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites[J]. Angewandte Chemie: International Edition, 2011, 50: 6799-6802. |
14 | WEN G , WANG B , WANG C , et al . Hydrothermal carbon enriched with oxygenated groups from biomass glucose as an efficient carbocatalyst[J]. Angewandte Chemie: International Edition, 2017, 56(2): 600-604. |
15 | WANG X , FENG J , BAI Y , et al . Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical Reviews, 2016, 116: 10983-11060. |
16 | EL-TONI A M , HABILA M A , LABIS J P , et al . Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures[J]. Nanoscale, 2016, 8(5): 2510-2531. |
17 | YOU Z , WEI Y , RUI Y L , et al . Preparation of carbon nanospheres by non-catalytic chemical vapor deposition and their formation mechanism[J]. New Carbon Materials, 2016, 31: 467-474. |
18 | SUN Z , LIU Y , LI B , et al . General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals[J]. ACS Nano, 2013, 7(10): 8706-8714. |
19 | TAE W, KIM P W C, IGOR I , et al . Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells[J]. Nano Letters, 2008, 8(11): 3724-3727. |
20 | LEI Z , CHRISTOV N , ZHANG L L , et al . Mesoporous carbon nanospheres with an excellent electrocapacitive performance[J]. Journal of Materials Chemistry, 2011, 21(7): 2274-2281. |
21 | LIANG C D , HONG K L , GUIOCHON G A , et al . Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie, 2004, 116: 5909-5913. |
22 | AI K , LIU Y , RUAN C , et al . Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts[J]. Advanced Materials, 2013, 25: 998-1003. |
23 | ZHANG P , GONG Y , WEI Z , et al . Updating biomass into functional carbon material in ionothermal manner[J]. ACS Applied Materials & Interfaces, 2014, 6(15):12515. |
24 | ZHANG P , YUAN J , FELLINGER T P , et al . Improving hydrothermal carbonization by using poly(ionic liquid)s[J]. Angewandte Chemie: International Edition, 2013, 52: 6028-6032. |
25 | BACCILE N , ANTONIETTI M , TITIRICI M M . One-step hydrothermal synthesis of nitrogen-doped nanocarbons: albumine directing the carbonization of glucose[J]. ChemSusChem, 2010, 3(2): 246-253. |
26 | CHEN T Q , PAN L K , LU T , et al . Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(5): 1263-1267. |
27 | STÖBER W , ARTHUR F , ERNST B . Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968,26(1): 62-69. |
28 | LIU J , QIAO S Z , LIU H , et al . Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie:International Edition, 2011, 50: 5947-5951. |
29 | ZHAO J M , NIU W X , ZHANG L , et al . A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol-formaldehyde resin and carbon nano/microspheres[J]. Macromolecules, 2013, 46(1): 140-145. |
30 | ZHANG C F , HATZELL K B , BOOTA M , et al . Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes[J]. Carbon, 2014, 77: 155-164. |
31 | LIU J , WICKRAMARATNE N P , QIAO S Z , et al . Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature Materials, 2015, 14(8): 763-774. |
32 | CHOMA J , JAMIOLA D , AUGUSTYNEK K , et al . New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres[J]. Journal of Materials Chemistry, 2012, 22(25): 12636-12642. |
33 | JIANG J G , BAO L , QIANG Y W , et al . Sol-gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors[J]. Electrochimica Acta, 2015, 158: 229-236. |
34 | LUDWINOWICZ J , JARONIEC M . Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption[J]. Carbon, 2015, 82: 297-303. |
35 | YANG T Y , LIU J , ZHOU R F , et al . N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts[J]. Journal of Materials Chemistry A, 2014, 2(42): 18139-18146. |
36 | WICKRAMARATNE N P , JARONIEC M . Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO2 at ambient conditions[J]. Adsorption, 2013, 20: 287-293. |
37 | XU Z G , GUO Q P . A simple method to prepare monodisperse and size-tunable carbon nanospheres from phenolic resin[J]. Carbon, 2013, 52(2): 464-467. |
38 | XU S , LUO Y , TAN B . Recent development of hypercrosslinked microporous organic polymers[J]. Macromolecular Rapid Communications, 2013, 34: 471-484. |
39 | YONG Z Z , LI X D , LIANG Z , et al . N-doped hollow carbon nanospheres as sulfur hosts for high performance Li-S batteries[J]. New Carbon Materials, 2017, 32: 297-303. |
40 | BIN D S, CHI Z X , LI Y , et al . Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres[J]. Journal of the American Chemical Society, 2017, 139(38): 13492-13498. |
41 | FENG S S , LI W , SHI Q , et al . Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture[J]. Chemistry Communications, 2014, 50(3): 329-331. |
42 | ZHANG W , WANG F S , LI X L , et al . Fabrication of hollow carbon nanospheres introduced with Fe and N species immobilized palladium nanoparticles as catalysts for the semihydrogenation of phenylacetylene under mild reaction conditions[J]. Applied Surface Science, 2017, 404: 398-408. |
43 | YANG Z C , ZHANG Y , KONG J H , et al . Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers[J]. Chemistry of Materials, 2013, 25: 704-710. |
44 | WU J , JIN C , YANG Z R , et al . Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction[J]. Carbon, 2015, 82: 562-571. |
45 | FANG Y , ZHENG G , YANG J , et al . Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[J]. Angewandte Chemie, 2014, 53(21): 5366-5370. |
46 | FANG X , LIU S , ZANG J , et al . Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures[J]. Nanoscale, 2013, 5: 6908-6916. |
47 | LU Z Y , LI B , YANG D J , et al . A self-assembled silicon/phenolic resin-based carbon core-shell nanocomposite as an anode material for lithium-ion batteries[J]. RSC Advances, 2018, 8(7): 3477-3482. |
48 | CHEN J , ZHANG F , ZHAO Y L , et al . Facile synthesis of CdS/C core-shell nanospheres with ultrathin carbon layer for enhanced photocatalytic properties and stability[J]. Applied Surface Science, 2016, 362: 126-131. |
49 | ZHANG Z , SHI X D , YANG X . Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage[J]. Electrochimica Acta, 2016, 208: 238-243. |
50 | TONG X F , ZHANG F , CHEN G G , et al . Core-shell aluminum@carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates[J]. Advanced Energy Materials, 2018, 8: 1701967. |
51 | WANG D H , ZHAO B , JIANG Y , et al . Self-etching preparation of yolk-shell Ag@carbon nanostructures for highly effective reduction of 4-nitrophenol[J]. Catalysis Communications, 2017, 102: 114-117. |
52 | LIANG H W , WEI W , WU Z S , et al . Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135: 16002-16005. |
53 | PRIETO G , TUYSUZ H , DUYCKAERTS N , et al . Hollow nano- and microstructures as catalysts[J]. Chemical Reviews, 2016, 116(22): 14056-14119. |
54 | ZHANG P , QIAO Z A , DAI S . Recent advances in carbon nanospheres: synthetic routes and applications[J]. Chem. Commun. (Camb.), 2015, 51(45): 9246-9256. |
55 | LU Y M , ZHU H Z , LI W G , et al . Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation[J]. Journal of Materials Chemistry A, 2013, 1: 3783. |
56 | YANG T Y , LING H J , LAMONIER J F , et al . A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles[J]. NPG Asia Materials, 2016, 8(2): e240. |
57 | HUANG X H , MOON B K , BYEON S J , et al . Palladium nanoparticles decorated mesoporous carbon spheres as catalyst for reduction of 4-nitrophenol[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(11): 8771-8776. |
58 | RAVAT V , NONGWE I , COVILLE N J . Palladium-supported boron-doped hollow carbon spheres as catalysts for the solvent-free aerobic oxidation of alcohols[J]. ChemCatChem, 2012, 4(12): 1930-1934. |
59 | KIM Y J, MA R, REDDY D A , et al . Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline[J]. Applied Surface Science, 2015, 357: 2112-2120. |
60 | LIU R , QU F L , GUO Y L , et al . Au@carbon yolk-shell nanostructures via one-step core-hell-shell template[J]. Chemistry Communications, 2014, 50(4): 478-480. |
61 | DOU J , ZENG H C . Targeted synthesis of silicomolybdic acid (Keggin acid) inside mesoporous silica hollow spheres for Friedel-Crafts alkylation[J]. Journal of the American Chemical Society, 2012, 134: 16235-16246. |
[1] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[5] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[6] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[7] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[8] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[9] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[10] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[11] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[12] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[13] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Structural design of metal-organic framework materials and its adsorption performance on synthetic dyes [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5322-5338. |
[14] | FAN Xuyang, CHEN Yanxin, ZHAO Bo, ZHANG Leilei. Numerical simulation of pre-reduction for a new process of acid production from phosphogypsum by gas sulfur reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5414-5426. |
[15] | LIU Liang, WANG Zhaoxi, LI Xinlong, ZHANG Gaoshan, WANG Shouyang, ZHANG Linlin, LU Chang, QING Mengxia. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |