Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5414-5426.DOI: 10.16085/j.issn.1000-6613.2022-2140
• Fine chemicals • Previous Articles Next Articles
FAN Xuyang(), CHEN Yanxin(), ZHAO Bo, ZHANG Leilei
Received:
2022-11-18
Revised:
2023-05-22
Online:
2023-11-11
Published:
2023-10-15
Contact:
CHEN Yanxin
通讯作者:
陈延信
作者简介:
范旭阳(1997—),男,硕士研究生,研究方向为固废资源化及多相流数值仿真。E-mail:fxy_mail@126.com。
基金资助:
CLC Number:
FAN Xuyang, CHEN Yanxin, ZHAO Bo, ZHANG Leilei. Numerical simulation of pre-reduction for a new process of acid production from phosphogypsum by gas sulfur reduction[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5414-5426.
范旭阳, 陈延信, 赵博, 张蕾蕾. 气体硫黄还原磷石膏制酸新工艺预还原数值模拟[J]. 化工进展, 2023, 42(10): 5414-5426.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2140
边界 | 速度/m·s-1 | 质量流量/kg·s-1 | 温度/K | DPM边界 | 备注 |
---|---|---|---|---|---|
窑尾烟气入口 | 20 | — | 1173 | Escape | 速度入口 |
气体硫黄入口 | — | 0.3 | 1023 | Escape | 质量流量入口 |
生料颗粒入口 | — | 2 | 870 | Wall-jet | 质量流量入口 |
出口 | — | — | — | Trap | 自由流动 |
边界 | 速度/m·s-1 | 质量流量/kg·s-1 | 温度/K | DPM边界 | 备注 |
---|---|---|---|---|---|
窑尾烟气入口 | 20 | — | 1173 | Escape | 速度入口 |
气体硫黄入口 | — | 0.3 | 1023 | Escape | 质量流量入口 |
生料颗粒入口 | — | 2 | 870 | Wall-jet | 质量流量入口 |
出口 | — | — | — | Trap | 自由流动 |
组分 | 占比/% |
---|---|
铝土矿 | 29.0 |
石灰石 | 47.0 |
赤铁矿 | 13.0 |
磷石膏 | 11 |
组分 | 占比/% |
---|---|
铝土矿 | 29.0 |
石灰石 | 47.0 |
赤铁矿 | 13.0 |
磷石膏 | 11 |
原材料 | SiO2 | CaO | SO3 | Al2O3 | MgO | Fe2O3 | TiO2 | P2O5 | F | 烧失量 |
---|---|---|---|---|---|---|---|---|---|---|
铝土矿 | 10.47 | 0.07 | 7.55 | 54.63 | 0.25 | 11.06 | 2.79 | — | — | 13.73 |
石灰石 | 4.00 | 53.49 | 0.04 | 0.37 | 1.15 | 0.72 | — | — | — | 41.17 |
赤铁矿 | 8.96 | 2.64 | 0.54 | 4.49 | 0.69 | 75.89 | 0.89 | — | — | 4.65 |
磷石膏 | 4.19 | 35.75 | 48.21 | 1.00 | 0.07 | 0.54 | 0.14 | 1.23 | 0.30 | 3.62 |
原材料 | SiO2 | CaO | SO3 | Al2O3 | MgO | Fe2O3 | TiO2 | P2O5 | F | 烧失量 |
---|---|---|---|---|---|---|---|---|---|---|
铝土矿 | 10.47 | 0.07 | 7.55 | 54.63 | 0.25 | 11.06 | 2.79 | — | — | 13.73 |
石灰石 | 4.00 | 53.49 | 0.04 | 0.37 | 1.15 | 0.72 | — | — | — | 41.17 |
赤铁矿 | 8.96 | 2.64 | 0.54 | 4.49 | 0.69 | 75.89 | 0.89 | — | — | 4.65 |
磷石膏 | 4.19 | 35.75 | 48.21 | 1.00 | 0.07 | 0.54 | 0.14 | 1.23 | 0.30 | 3.62 |
数据 | 还原炉温度/K | 分解率/% | ||
---|---|---|---|---|
底部 | 中部 | 顶部 | ||
仿真计算数据 | 1173 | 991 | 982 | 26.84 |
实测数据 | 1150 | 943 | 932 | 25.54 |
数据 | 还原炉温度/K | 分解率/% | ||
---|---|---|---|---|
底部 | 中部 | 顶部 | ||
仿真计算数据 | 1173 | 991 | 982 | 26.84 |
实测数据 | 1150 | 943 | 932 | 25.54 |
1 | TAYIBI Hanan, CHOURA Mohamed, LÓPEZ Félix A, et al. Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management, 2009, 90(8): 2377-2386. |
2 | GAO Jing, LI Qiang, LIU Fuli. Calcium sulfate whisker prepared by flue gas desulfurization gypsum: A physical-chemical coupling production process[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2221-2226. |
3 | 陆金驰, 李东南, 陈凯, 等. 煅烧磷石膏对蒸压硅酸盐制品水化过程的影响[J]. 化工学报, 2012, 63(7): 2317-2323. |
LU Jinchi, LI Dongnan, CHEN Kai, et al. Effect of calcined phosphogypsum on hydration process of autoclaved silicate products[J]. CIESC Journal, 2012, 63(7): 2317-2323. | |
4 | 李凤玲. 磷石膏分解特性与其分段煅烧制备硫铝酸盐水泥研究[D]. 重庆: 重庆大学, 2016. |
LI Fengling. Decomposition characteristics of phosphogypsum and piecewise calcination for preparing sulphoaluminate cement[D]. Chongqing: Chongqing University, 2016. | |
5 | SHEN Yan, QIAN Jueshi, CHAI Junqing, et al. Calcium sulphoaluminate cements made with phosphogypsum: Production issues and material properties[J]. Cement and Concrete Composites, 2014, 48: 67-74. |
6 | MA Liping, NING Ping, ZHENG Shaocong, et al. Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3597-3602. |
7 | YAN Xiaodan, MA Liping, ZHU Bin, et al. Reaction mechanism process analysis with phosphogypsum decomposition in multiatmosphere control[J]. Industrial & Engineering Chemistry Research, 2014, 53(50): 19453-19459. |
8 | 孟令佳, 吉忠海, 陈津. 工业副产石膏热分解脱硫的研究进展[J]. 化工进展, 2017, 36(2): 626-633. |
MENG Lingjia, JI Zhonghai, CHEN Jin. Advance of the thermal decomposition of industrial by-product gypsum[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 626-633. | |
9 | Antar KAl¨S, MOHAMED Jemal. A thermogravimetric study into the effects of additives and water vapor on the reduction of gypsum and Tunisian phosphogypsum with graphite or coke in a nitrogen atmosphere[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(1): 113-125. |
10 | 钟本和, 王辛龙, 张志业, 等. 硫黄还原分解磷石膏制硫酸节能减排新工艺[J]. 化肥工业, 2014, 41(2): 7-10, 27. |
ZHONG Benhe, WANG Xinlong, ZHANG Zhiye, et al. New saving energy and reducing discharge process of producing sulfuric acid by phosphogypsum reduction and decomposition with sulfur[J]. Chemical Fertilizer Industry, 2014, 41(2): 7-10, 27. | |
11 | 王辛龙, 张志业, 杨守明, 等. 硫黄分解磷石膏制硫酸技术进展及推广应用[J]. 硫酸工业, 2018(1): 45-49, 53. |
WANG Xinlong, ZHANG Zhiye, YANG Shouming, et al. Technical progress and application of sulphuric acid production by decomposing phosphogypsum with sulphur[J]. Sulphuric Acid Industry, 2018(1): 45-49, 53. | |
12 | 张国兴, 陈延信, 庞仁杰, 等. 一种硫黄气体还原石膏制硫铝酸盐水泥联产硫酸的方法: CN111559879B[P]. 2022-05-20. |
ZHANG Guoxing, CHEN Yanxin, PANG Renjie, et al. Method for preparing sulphoaluminate cement and coproducing sulfuric acid by reducing gypsum with sulfur gas: CN111559879B[P]. 2022-05-20. | |
13 | 任盼锋, 海润泽, 李奇, 等. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
REN Panfeng, Runze HAI, LI Qi, et al. Review of numerical study on liquid-solids two-phase mass transfer process in fluidized bed[J]. CIESC Journal, 2022, 73(1): 1-17. | |
14 | 尹少武, 张朝, 康鹏, 等. 硅粉氮化输送床内气固反应过程数值模拟[J]. 化工进展, 2022, 41(5): 2256-2267. |
YIN Shaowu, ZHANG Chao, KANG Peng, et al. Numerical simulation of gas solid reaction process in silicon powder nitriding conveying bed[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2256-2267. | |
15 | YANG Yu, ZHANG Yan, LI Shijin, et al. Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization[J]. Chemosphere, 2020, 258: 127420. |
16 | ZHANG Wenwu, XIE Xing, ZHU Baoshan, et al. Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model[J]. Renewable Energy, 2021, 164: 1496-1507. |
17 | KAPPELT Carolin, RZEHAK Roland. Investigation of fluid-dynamics and mass-transfer in a bubbly mixing layer by Euler-Euler simulation[J]. Chemical Engineering Science, 2022, 264: 118147. |
18 | Hongmei LYU, LUCAS Dirk, RZEHAK Roland, et al. A particle-center-averaged Euler-Euler model for monodisperse bubbly flows[J]. Chemical Engineering Science, 2022, 260: 117943. |
19 | PANDEY Bhoopendra, PRAJAPATI Yogesh K, SHETH Pratik N. CFD analysis of the downdraft gasifier using species-transport and discrete phase model[J]. Fuel, 2022, 328: 125302. |
20 | NGAMSIDHIPHONGSA Nathada, PONPESH Pimporn, SHOTIPRUK Artiwan, et al. Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions[J]. Energy Conversion and Management, 2020, 213: 112808. |
21 | MURUGAN P C, JOSEPH SEKHAR S. Species-Transport CFD model for the gasification of rice husk (Oryza Sativa) using downdraft gasifier[J]. Computers and Electronics in Agriculture, 2017, 139: 33-40. |
22 | Anderson JOHN D., 姚朝晖, 周强. 计算流体力学入门[M]. 北京: 清华大学出版社, 2010. |
Anderson JOHN D., YAO Zhaohui, ZHOU Qiang. Computational fluid dynamics: The basics with applications[M]. Beijing: Tsinghua University Press, 2010. | |
23 | 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. |
WANG Fujun. Computational fluid dynamics analysis: Principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004. | |
24 | LIU Huanpeng, LIU Wentie, ZHENG Jianxiang, et al. Numerical study of gas-solid flow in a precalciner using kinetic theory of granular flow[J]. Chemical Engineering Journal, 2004, 102(2): 151-160. |
25 | 梅书霞, 谢峻林, 陈晓琳, 等. 涡旋式分解炉中煤及垃圾衍生燃料共燃烧耦合CaCO3分解的数值模拟[J]. 化工学报, 2017, 68(6): 2519-2525. |
MEI Shuxia, XIE Junlin, CHEN Xiaolin, et al. Numerical simulation of co-combustion of coal and refuse derived fuel in coupling with decomposition of calcium carbonate in precalciner with swirl type prechamber[J]. CIESC Journal, 2017, 68(6): 2519-2525. | |
26 | 石朝亭. 水泥分解炉高温预热燃料燃烧耦合窑气NO还原数值研究[D]. 北京: 中国科学院大学, 2021. |
SHI Zhaoting. Numerical study on NO reduction of kiln gas coupled with high temperature preheating fuel combustion in cement calciner[D]. Beijing: University of Chinese Academy of Sciences, 2021. | |
27 | 王家楣, 肖国权. 分解炉内气固两相流场不同模型模拟结果分析[J]. 海军工程大学学报, 2005, 17(3): 5-8. |
WANG Jiamei, XIAO Guoquan. Analysis of simulating results with different models for gas-solid two-phase flows in a precalciner[J]. Journal of Naval University of Engineering, 2005, 17(3): 5-8. | |
28 | YAN Zhiqiang, WANG Zean, WANG Xiaofeng, et al. Kinetic model for calcium sulfate decomposition at high temperature[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3490-3497. |
29 | KHINAST J, KRAMMER G F, BRUNNER Ch, et al. Decomposition of limestone: The influence of CO2 and particle size on the reaction rate[J]. Chemical Engineering Science, 1996, 51(4): 623-634. |
30 | SATTERFIELD Charles N, FEAKES Frank. Kinetics of the thermal decomposition of calcium carbonate[J]. AIChE Journal, 1959, 5(1): 115-122. |
31 | VON BOHNSTEIN Maximilian, LANGEN Josef, FRIGGE Lorenz, et al. Comparison of CFD simulations with measurements of gaseous sulfur species concentrations in a pulverized coal fired 1 MWth furnace[J]. Energy & Fuels, 2016, 30(11): 9836-9849. |
32 | 王聪. 气体硫黄协同高硫铝土矿预分解磷石膏制硫铝酸盐水泥[D]. 西安: 西安建筑科技大学, 2021. |
WANG Cong. Preparation of sulphoaluminate cement by pre decomposition of phosphogypsum with gas sulfur and high sulfur bauxite[D]. Xi’an: Xi’an University of Architecture and Technology, 2021. | |
33 | 庞仁杰. 以硫代碳化学分解石膏制硫酸的可行性分析[J]. 硫酸工业, 2015(2): 22-25. |
PANG Renjie. Feasibility analysis of sulphuric acid production by gypsum decomposed by sulphur instead of carbon[J]. Sulphuric Acid Industry, 2015(2): 22-25. | |
34 | 赵博, 张国兴, 陈延信, 等. 气体硫黄和高硫铝土矿协同还原石膏制硫铝酸盐水泥联产硫酸的方法: CN111574079B[P]. 2022-05-20. |
ZHAO Bo, ZHANG Guoxing, CHEN Yanxin, et al. Method for preparing sulphoaluminate cement and co-producing sulfuric acid by synergistically reducing gypsum through gaseous sulfur and high-sulfur bauxite: CN111574079B[P]. 2022-05-20. | |
35 | 陈延信, 庞仁杰, 赵博, 等. 硫黄气体还原石膏制贝利特硫铝酸盐水泥联产硫酸的方法: CN111574080B[P]. 2022-05-20. |
CHEN Yanxin, PANG Renjie, ZHAO Bo, et al. Method for preparation of belite sulphoaluminate cement and co-production of sulfuric acid by reducing gypsum with sulfur gas: CN111574080B[P]. 2022-05-20. | |
36 | 张国兴, 庞仁杰, 刘景霞, 等. 由硫黄气体还原石膏制硫酸联产水泥熟料的方法: CN104555946B[P]. 2017-01-18. |
ZHANG Guoxing, PANG Renjie, LIU Jingxia, et al. Method for jointly producing sulphuric acid and cement clinker by using sulphur gas to reduce gypsum: CN104555946B[P]. 2017-01-18. | |
37 | 张国兴, 庞仁杰. 一种硫黄气体还原废硫酸制液体二氧化硫和硫酸的系统: CN209161488U[P]. 2019-07-26. |
ZHANG Guoxing, PANG Renjie. System for preparing liquid sulfur dioxide and sulfuric acid by reducing waste sulfuric acid with sulfur gas: CN209161488U[P]. 2019-07-26. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[9] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[10] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[13] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[14] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[15] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |