Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (11): 4214-4225.DOI: 10.16085/j.issn.1000-6613.2018-0040

Previous Articles     Next Articles

Research progress of Sb2S3-based solar cells

WANG Xinyi, WANG Zhiqiang, ZHANG Wenshuai, SU Jinzhan   

  1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2018-01-04 Revised:2018-04-23 Online:2018-11-05 Published:2018-11-05

Sb2S3太阳能电池的研究进展

王心怡, 王志强, 张文帅, 苏进展   

  1. 西安交通大学动力工程多相流国家重点实验室, 陕西 西安 710049
  • 通讯作者: 苏进展,副教授,硕士生导师,研究方向为可再生能源转化与利用。E-mail:j.su@mail.xjtu.edu.cn。
  • 作者简介:王心怡(1995-),女,硕士研究生。E-mail:wxy19950715@stu.xjtu.edu.cn。
  • 基金资助:
    中央高校基本科研业务费专项项目(xjj2016039)。

Abstract: Compared to the well-developed CIGS, CdTe, and organic/inorganic hybrid perovskite solar cells, the Sb2S3-based solar cells have advantages of the low cost, non-toxicity and high stability as well as the excellent photoelectric characteristic. The stibnite Sb2S3 has band gaps ranging from 1.5eV to 2.2eV and high absorption coefficient up to 105cm-1. As a result, the Sb2S3 has promising prospect for solar energy conversion applications. Therefore, the Sb2S3-based solar cells have become quite competitive among different solar cells. However, the highest conversion efficiency obtained by the Sb2S3-based solar cells is 7.5%, which is yet lower compared to Si, CIGS and CdTe based solar cells. In this review, the operation principle of the Sb2S3-based solar cells was briefly introduced, and its development status was discussed from different aspects, such as materials for photoanode, preparation methods of Sb2S3, hole-transfer material, and counter electrode. Furthermore, the methods to improve the performance of Sb2S3-based solar cells by addressing the limitations were also summarized and discussed. Finally, the perspective for future development of Sb2S3-based solar cells was provided. With the researchers putting more efforts on the developing new materials or novel structures, improving the crystallinity and reducing the defects of Sb2S3, heterojunction interface engineering as well as metal ion doping, the Sb2S3-based solar cells will see a promising future for the photovoltaic application to harvest solar energy.

Key words: solar energy, overall conversion efficiency, preparation, film, antimony trisulfide (Sb2S3), semiconductor

摘要: Sb2S3太阳能电池相比于其他太阳能电池如铜铟镓硒、碲化镉和有机-无机钙钛矿等,具有成本低、无毒性、稳定性高的优点,并且Sb2S3材料本身拥有优良的光学性能,如带隙宽度为1.5~2.2eV、光吸收系数高达105cm–1,因此在太阳能转化方面具有良好的应用前景。但目前Sb2S3太阳能电池的光电转化效率仍然不高,其最高光电转化效率仅有7.5%,远低于发展成熟的单晶硅太阳能电池、铜铟镓硒、碲化镉太阳能电池。本文简要介绍了Sb2S3太阳能电池的工作原理,从光阳极、吸光层Sb2S3、空穴传输层3个方面阐述了其发展现状及存在的问题。随后针对限制光电转化效率的因素,阐述了现有的优化电池性能的方法及其研究进展。最后对Sb2S3太阳能电池的未来发展方向进行了展望,基于对现有研究分析认为,在未来的研究中需要进一步探索新型的光阳极半导体的种类和结构,研究简单低耗、结晶性良好的Sb2S3薄膜的制备方法,研究具有高电子传导率、与Sb2S3和对电极接触良好的空穴传输层以及发展高效界面修饰以及金属离子掺杂的方法,以提高Sb2S3太阳能电池的性能。

关键词: 太阳能, 光电转化效率, 制备, 膜, 三硫化二锑(Sb2S3), 半导体

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd