Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (11): 4214-4225.DOI: 10.16085/j.issn.1000-6613.2018-0040
Previous Articles Next Articles
WANG Xinyi, WANG Zhiqiang, ZHANG Wenshuai, SU Jinzhan
Received:
2018-01-04
Revised:
2018-04-23
Online:
2018-11-05
Published:
2018-11-05
王心怡, 王志强, 张文帅, 苏进展
通讯作者:
苏进展,副教授,硕士生导师,研究方向为可再生能源转化与利用。E-mail:j.su@mail.xjtu.edu.cn。
作者简介:
王心怡(1995-),女,硕士研究生。E-mail:wxy19950715@stu.xjtu.edu.cn。
基金资助:
CLC Number:
WANG Xinyi, WANG Zhiqiang, ZHANG Wenshuai, SU Jinzhan. Research progress of Sb2S3-based solar cells[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4214-4225.
王心怡, 王志强, 张文帅, 苏进展. Sb2S3太阳能电池的研究进展[J]. 化工进展, 2018, 37(11): 4214-4225.
[1] 刘超. 钙钛矿太阳能电池的制备及其光电化学性能研究[D]. 合肥:合肥工业大学, 2016. LIU C. Study on the preparation and photoelectric chemical properties of perovskite solar cells[D]. Hefei:Hefei University of Technology, 2016. [2] 李海雁, 杨锡震. 太阳能电池[J]. 大学物理, 2003, 22(9):36-41. LI H Y, YANG X Z. Solar cell[J]. College Physics, 2003, 22(9):36-41. [3] 梁宗存, 沈辉, 李戬洪. 太阳能电池及材料研究[J]. 材料导报, 2000, 14(8):38-40. LIANG Z C, SHEN H, LI J H. Research on solar cells and materials[J]. Material Review, 2000, 14(8):38-40. [4] 向发午. Bi2S3量子点敏化TiO2太阳能电池的制备和性能研究[D]. 武汉:华中科技大学, 2012. XIANG F W. Preparation and performance of the solar cell with Bi2S3 quantum dot sensitized TiO2[D]. Wuhan:Huazhong University of Science and Technology, 2012. [5] YANG B, BAI Y, CHENG T, et al. Research progress of all-solid-state quantum dot solar cells[J]. Micronanoelectronic Technology, 2017, 54(4):235-242. [6] 谭淼. Sb2S3薄膜的制备及其在太阳能电池中的应用[D]. 锦州:渤海大学, 2017. TAN M. Preparation of Sb2S3 thin film and its application in solar cell[D]. Jinzhou:Bohai University, 2017. [7] CHOI Y C, LEE D U, NOH J H, et al. Highly Improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy[J]. Advanced Functional Materials, 2014, 24(23):3587-3592. [8] 卫会云, 王国帅, 吴会觉, 等. 量子点敏化太阳能电池研究进展[J]. 物理化学学报, 2016, 32(1):201-213. WEI H Y, WANG G S, WU H J, et al. Research progress of quantum dot sensitized solar cells[J]. Phys.-Chim. Sin., 2016, 32(1):201-213. [9] 马娟, 宋凤丹, 陈昊, 等. 量子点敏化太阳能电池研究进展[J]. 化工进展, 2015, 34(10):3601-3608. MA J, SONG F D, CHEN H, et al. Research progress of quantum dot sensitized solar cells[J]. Chemical Industry and Engineering Progress, 2015, 34(10):3601-3608. [10] ZHAO L, ZHENG Z, WANG M, et al. Quantum dot solar cells:US8426728B2[P]. 2013. [11] 程磊, 曾涛, 陈云霞, 等. 量子点敏化太阳能电池研究进展[J]. 陶瓷学报, 2016, 37(6):613-620. CHEN L, ZENG T, CHEN Y X, et al. Research progress of quantum dot sensitized solar cells[J]. Journal of Ceramics, 2016, 37(6):613-620. [12] ITZHAIK Y, NⅡTSOO O, PAGE M, et al. Sb2S3-sensitized nanoporous TiO2 solar cells[J]. Journal of Physical Chemistry C, 2009, 113:4254-4256. [13] NEZU S, LARRAMONA G, CHON C, et al. Light soaking and gas effect on nanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept[J]. Jphyschemc, 2010, 114:6854-6859. [14] SENTHIL T S, MUTHUKUMARASAMY N, KANG M. Ball/dumbbell-like structured micrometer-sized Sb2S3 particles as a scattering layer in dye-sensitized solar cells[J]. Optics Letters, 2014, 39(7):1865-1868. [15] CHANG J A, RHEE J H, IM S H, et al. High-performance nanostructured inorganic-organic heterojunction solar cells[J]. Nano Letters, 2010, 10(7):2609-2612. [16] WANG Q, CHEN C, LIU W, et al. Recent progress in all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells[J]. Journal of Nanoparticle Research, 2016, 18(1):7-23. [17] CARDOSO J C, GRIMES C A, FENG X, et al. Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic- inorganic thin film photovoltaics[J]. Chemical Communications, 2012, 48(22):2818-2820. [18] 席金芳. Sb2S3/TiO2纳米管阵列导质结的制备及光电性能研究[D]. 成都:西南交通大学, 2015. XI J F. Preparation of Sb2S3/TiO2 nanotube array and its photoelectric properties[D]. Chengdu:Southwest Jiaotong University, 2015. [19] GU K, ZHONG P, GUO M, et al. Sonication-polished anodic TiO2 nanotube array-based photoanode for efficient solar energy conversion[J]. Journal of Solid State Electrochemistry, 2016, 20(12):3337-3348. [20] 李薇馨. 基于TiO2光阳极的敏化太阳能电池研究[D]. 武汉:华中科技大学, 2016. LI W X. Study on the sensitized solar cell based on TiO2 photoanode[D]. Wuhan:Huazhong University of Science and Technology, 2016. [21] 王尚鑫, 李吉, 严金梅, 等. Sb2S3/TiO2纳米棒的构筑及其在杂化太阳电池中的应用[J]. 电源技术, 2017, 41(3):425-428. WANG S X, LI J, YAN J M, et al. Sb2S3/TiO2 nanoparticle construction and its application in hybrid solar cells[J]. Chinese Journal of Power Sources, 2017, 41(3):425-428. [22] ZHANG H, SONG L, LUO L, et al. TiO2/Sb2S3/P3HT based inorganic-organic hybrid heterojunction solar cells with enhanced photoelectric conversion performance[J]. Journal of Electronic Materials, 2017, 46(7):4670-4675. [23] HAN J, LIU Z, ZHENG X, et al. Trilaminar ZnO/ZnS/Sb2S3 nanotube arrays for efficient inorganic-organic hybrid solar cells[J]. RSC Advances, 2014, 4(45):23807-23814. [24] ENGLMAN T, TERKIELTAUB E, ETGAR L. High open circuit voltage in Sb2S3/metal oxide-based solar cells[J]. Journal of Physical Chemistry C, 2015, 119(23):12904-12909. [25] LEI H, YANG G, GUO Y, et al. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor[J]. Physical Chemistry Chemical Physics, 2016, 18(24):16436-16443. [26] 郭志敏. ZnO壳核式微纳分级结构有序阵列杂化太阳电池的研究[D]. 石家庄:河北科技大学, 2016. GUO Z M. The study of the ordered array hybrid solar cell of ZnO shell nuclear microstructure[D]. Shijiazhuang:Hebei University of Science and Technology, 2016. [27] PARIZE R, KATERSKI A, GROMYKO I, et al. ZnO/TiO2/Sb2S3 core-shell nanowire heterostructure for extremely thin absorber solar cells[J]. Journal of Physical Chemistry C, 2017, 121(18):9672-9680. [28] 周儒. TiO2基量子点敏化太阳能电池光电转换性能研究[D]. 合肥:中国科学技术大学, 2014. ZHOU R. Study on photoelectric conversion performance of TiO2 based quantum dot sensitized solar cells[D]. Hefei:University of Science and Technology of China, 2014. [29] 刘英博. 基于多孔TiO2光阳极的量子点敏化太阳能电池[D]. 天津:天津大学, 2015. LIU Y B. A quantum dot sensitized solar cell based on the porous TiO2 photoanode[D]. Tianjin:Tianjin University, 2015. [30] DENG H, YUAN S, YANG X, et al. Efficient and stable TiO2/Sb2S3 planar solar cells from absorber crystallization and Se-atmosphere annealing[J]. Materials Today Energy, 2017, 3:15-23. [31] SANG H I, LIM C S, CHANG J A, et al. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells[J]. Nano Letters, 2011, 11(11):4789-4793. [32] 豆岁阳. 新型纳米结构太阳能电池的制备及性能表征[D]. 北京:北京交通大学, 2014. DOU S Y. Preparation and characterization of new nano-structured solar cells[D]. Beijing:Beijing Jiaotong University, 2014. [33] GÖDEL K C, CHOI Y C, ROOSE B, et al. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies[J]. Chemical Communications, 2015, 51(41):8640-8643. [34] CHOI Y C, SEOK S I. Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution[J]. Advanced Functional Materials, 2015, 25(19):2892-2898. [35] 张晓萍. 聚苯胺在Sb2S3/SnS敏化太阳能电池中的应用研究[D]. 泉州:华侨大学, 2013. ZHANG X P. Application of polyaniline in Sb2S3/SnS sensitized solar cells[D]. Quanzhou:Huaqiao University, 2013. [36] ITZHAIK Y, BENDIKOV T, HINES D, et al. Band diagram and effects of the KSCN treatment in TiO2/Sb2S3/CuSCN ETA cells[J]. Journal of Physical Chemistry C, 2016, 120(1):31-41. [37] KIM K, JUNG K, LEE M J, et al. Effect of processing parameters on photovoltaic properties of Sb2S3 quantum dot-sensitised inorganic-organic heterojunction solar cells[J]. International Journal of Nanotechnology, 2016, 13(4/5/6):345-353. [38] LIM C S, IM S H, RHEE J H, et al. Hole-conducting mediator for stable Sb2S3-sensitized photoelectrochemical solar cells[J]. Journal of Materials Chemistry, 2012, 22(3):1107-1111. [39] JIN H H, SANG H I, KIM H, et al. Sb2S3-sensitized photoelectrochemical cells:open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer[J]. Journal of Physical Chemistry C, 2012, 116(39):20717-20721. [40] MOON S J, ITZHAIK Y, YUM J H, et al. Sb2S3-based mesoscopic solar cell using an organic hole conductor[J]. J. Phys. Chem. Lett., 2010, 1(10):1524-1527. [41] BOIX P P, LARRAMONA G, JACOB A, et al. Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter[J]. Journal of Physical Chemistry C, 2012, 116(1):1579-1587. [42] LIM C S, IM S H, CHANG J A, et al. Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells[J]. Nanoscale, 2012, 4(2):429-432. [43] CHRISTIANS J A, KAMAT P V. Trap and transfer:two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells[J]. ACS Nano, 2013, 7(9):7967-7974. [44] CHRISTIANS J A, LEIGHTON D T, KAMAT P V. Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells[J]. Energy & Environmental Science, 2014, 7(3):1148-1158. [45] KIM J K, VEERAPPAN G, HEO N, et al. Efficient hole extraction from Sb2S3 heterojunction solar cells by the solid transfer of preformed PEDOT:PSS film[J]. The Journal of Physical Chemistry C, 2014, 118(39):22672-22677. [46] SUN P, ZHANG X, WANG L, et al. Efficiency enhanced rutile TiO2 nanowire solar cells based on Sb2S3 absorber and CuI hole conductor[J]. New Journal of Chemistry, 2015, 39(9):7243-7250. [47] 杨博, 白一鸣, 程泰, 等. 全固态量子点太阳电池的研究进展[J]. 微纳电子技术, 2017, 54(4):235-242. YANG B, BAI Y, CHENG T, et al. Research progress of all-solid- state quantum dot solar cells[J]. Micronanoelectronic Technology, 2017, 54(4):235-242. [48] IVAN M S, GIMENEZ S, GOMEZ R, et al. Recombination in quantum dot sensitized solar cells[J]. Accounts of Chemical Research, 2009, 42(11):1848-1857. [49] CHANG J A, SANG H I, YONG H L, et al. Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels[J]. Nano Letters, 2012, 12(4):1863- 1867. [50] TSUJIMOTO K, NGUYEN D C, ITO S, et al. TiO2 surface treatment effects by Mg2+, Ba2+, and Al3+ on Sb2S3 extremely thin absorber solar cells[J]. Journal of Physical Chemistry C, 2012, 116(25):13465- 13471. [51] FUKUMOTO T, MOEHL T, NIWA Y, et al. Effect of interfacial engineering in solid-state nanostructured Sb2S3 heterojunction solar cells[J]. Advanced Energy Materials, 2013, 3(1):29-33. [52] KANG H W, LEE J W, PARK N G. Effect of double blocking layers at TiO2/Sb2S3 and Sb2S3/spiro-MeOTAD interfaces on photovoltaic performance[J]. Faraday Discussions, 2014, 176:287-299. [53] ITO S, TSUJIMOTO K, NGUYEN D C, et al. Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency[J]. International Journal of Hydrogen Energy, 2013, 38(36):16749-16754. [54] GODEL K C, ROOSE B, SADHANALA A, et al. Partial oxidation of the absorber layer reduces charge carrier recombination in antimony sulfide solar cells[J]. Physical Chemistry Chemical Physics, 2017, 19(2):1425-1430. |
[1] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[2] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[3] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[4] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[5] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[6] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[7] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[8] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[9] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[10] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[11] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[12] | WANG Lin, XIN Meihua, LI Mingchun, CHEN Qi, MAO Yangfan. Preparation of quaternized/sulfonated chitosan and its anti-biofilm activity [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2577-2585. |
[13] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[14] | WANG Lin, XIN Meihua, LI Mingchun, ZHANG Tao, MAO Yangfan. Preparation of alkyl quaternized chitosan and its anti-biofilm activity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1995-2002. |
[15] | ZONG Yue, ZHANG Ruijun, GAO Shanshan, TIAN Jiayu. A review on the pressure-driven thin film composite (TFC) membranes with special stability for desalination [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2058-2067. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |