[1] 李敏, 张智宏, 魏燕. 活性炭基π络合吸附剂的制备及其脱除二硫化碳性能[J]. 精细化工, 2016, 33(10):1130-1134. LI M, ZHANG Z H, WEI Y. Preparation of activated carbon based π-complexed adsorbent and removal of carbon disulfide[J]. Fine Chemicals, 2016, 33(10):1130-1134.
[2] RHODES C, RIDDELB S A, WESTA J, et al. Low-temperature hydrolysis of carbonyl sulfide and carbon disulfide:a review[J]. Catalysis Today, 2000, 59(3):443-464.
[3] TONG S, LANA I G D, CHUANG K T. Appraisal of catalysts for the hydrolysis of carbon disulfide[J]. Canadian Journal of Chemical Engineering, 1992, 70(3):516-522.
[4] 胡典明, 孔渝华, 王先厚, 等. MZX高温转化吸收型精脱硫剂的开发及工业应用[J]. 化学与生物工程, 2005, 22(9):40-42. HU D M, KONG Y H, WANG X H, et al. Development and industrial application of MZX high temperature conversion absorbent fine desulfurizer[J]. Chemistry & Bioengineering, 2005, 22(9):40-42.
[5] 张清建, 孔渝华, 王先厚, 等. EZ-2宽温氧化锌精脱硫剂的工业应用[J]. 天然气化工(C1化学与化工), 2006, 31(5):41-43. ZHANG Q J, KONG Y H, WANG X H, et al. Industrial application of EZ-2 wide temperature zinc oxide fine desulfurizer[J]. Natural Gas Chemical Industry, 2006, 31(5):41-43.
[6] 赵传军, 户春, 李小燕. 水煤气、半水煤气系统脱硫综合分析[J]. 化肥设计, 2007, 45(5):26-29. ZHAO C J, HU C, LI X Y. Comprehensive analysis of desulfurization in water gas and semi-water gas system[J]. Fertilizer Design, 2007, 45(5):26-29.
[7] CLARK P D, DOWLING N I, HUANG M. Conversion of CS2 and COS over alumina and titania under Claus process conditions:reaction with H2O and SO2[J]. Applied Catalysis B:Environmental, 2001, 31(2):107-112.
[8] 黄镕. LYT-511氧化钛基中温有机硫水解剂的开发与应用[J]. 中氮肥, 2006(6):63-66. HUANG R. Development and application of LYT-511 titanium dioxide based medium temperature organic sulfur hydrolyzate[J]. M-Sized Nitrogenous Fertilizer Progress, 2006(6):63-66.
[9] 李凯. COS、CS2水解脱硫剂的开发及机理研究[D]. 昆明:昆明理工大学, 2013. LI K. Study on the development and mechanism of COS and CS2 hydrolytic desulfurizer[D]. Kunming:Kunming University of Science and Technology, 2013.
[10] LAI J, SHAFI K V P M, LOOS K, et al. Doping γ-Fe2O3 nanoparticles with Mn(Ⅲ) suppresses the transition to the γ-Fe2O3 structure[J]. Journal of the American Chemical Society, 2003, 125(38):11470-11471.
[11] LIU C, YANG S, MA L, et al. Comparison on the performance of α-Fe2O3, and γ-Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia[J]. Catalysis Letters, 2013, 143(7):697-704.
[12] 王燕, 张战营, 曹建亮, 等. 化学沉淀法制备纳米α-Fe2O3及其气敏性能研究[J]. 河南理工大学学报(自然科学版), 2011, 30(2):239-243. WANG Y, ZHANG Z Y, CAO J L, et al. Preparation of nanometer α-Fe2O3 by chemical precipitation method and its gas sensitivity[J]. Journal of Henan Polytechnic University, 2011, 30(2):239-243.
[13] 王栋, 路春美, 张信莉. 沉淀过程对γ-Fe2O3催化剂物性及SCR脱硝性能的影响[C]//动力工程及工程热物理全国博士生学术论坛, 2013. WANG D, LU C M, ZHANG X L. Effect of precipitation process on physical properties of γ-Fe2O3 catalyst and SCR denitration performance[C]//Power Engineering and Engineering Thermophysics National Doctoral Academic Forum, 2013.
[14] 谭琦. 碳镁储氢材料控制性制备及放氢动力学的研究[D]. 青岛:山东科技大学, 2009. TAN Q. Controlled preparation of carbon-magnesium hydrogen storage material and kinetics of hydrogen desorption[D]. Qingdao:Shandong University of Science and Technology, 2009.
[15] JIA Z, PENG K, LI Y, et al. Preparation and application of novel magnetically separable γ-Fe2O3/activated carbon sphere adsorbent[J]. Materials Science & Engineering B, 2011, 176(11):861-865.
[16] MACHALA L, TUEK J, ZBOIL R. Polymorphous transformations of nanometric iron(Ⅲ) oxide:a review[J]. Chem. Mater, 2011, 23(14):3255-3272.
[17] 李文娟. 不同晶相金属氧化物微/纳结构材料的制备及其对重金属离子电化学检测的对比研究[D]. 合肥:中国科学技术大学, 2015. LI W J. Preparation of micro/nano-structured materials with different crystalline phase oxides and their comparative studies on electrochemical detection of heavy metal ions[D]. Hefei:University of Science and Technology of China, 2015.
[18] KREHULA S, MUSI S, ELJKO S, et al. The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media[J]. Journal of Alloys & Compounds, 2006, 420(1/2):260-268.
[19] DELIYANNI E A, BAKOYANNAKIS D N, ZOUBOULIS A I, et al. Akaganeite-type beta-FeO(OH) nanocrystals:preparation and characterization[J]. Microporous & Mesoporous Materials, 2001, 42(1):49-57.
[20] MOU X, LI Y, ZHANG B, et al. Crystal-phase- and morphology-controlled synthesis of Fe2O3, nanomaterials[J]. European Journal of Inorganic Chemistry, 2012(16):2684-2690.
[21] YI H, HE D, TANG X, et al. Effects of preparation conditions for active carbon-based catalyst on catalytic hydrolysis of carbon disulfide[J]. Fuel, 2012, 97:337-343.
[22] GIULIANA Magnacca, GIUSEPPINA Cerrato, CLAUDIO Morterra, et al. Structural and surface characterization of pure and sulfated iron oxides[J]. Chemistry of Materials, 2003, 15(3):675-687.
[23] LI K Z, HANEDA M, OZAWA M. The synthesis of iron oxides with different phases or exposure crystal planes and their catalytic property for propene oxidation[J]. Advanced Materials Research, 2012, 463-464:189-193.
[24] 刘秀丽. 磁性铁基脱汞剂对燃煤烟气中气态HgO的吸附特性研究[D]. 青岛:山东科技大学, 2015. LI X L. Study on the adsorption characteristics of magnetic iron- based amalgam on gaseous HgO in coal-fired flue gas[D]. Qingdao:Shandong University of Science and Technology, 2015.
[25] HUANG G, HE E, WANG Z, et al. Synthesis and characterization of γ-Fe2O3 for H2S removal at low temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(34):150-180.
[26] ÁLVAREZ-GUTIÉRREZ N, GIL M V, RUBIERA F, et al. Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations[J]. Chemical Engineering Journal, 2017, 307:249-257.
[27] HOY S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
[28] 黄铭珠. 矿化垃圾粒径分布与其重金属(Cu2+)环境化学行为的相关性研究[D]. 太原:山西大学, 2011. HUANG M Z. Study on the correlation between the size distribution of mineralized rubbish and the environmental chemical behavior of heavy metal (Cu2+)[D]. Taiyuan:Shanxi University, 2011. |