Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (06): 2302-2308.DOI: 10.16085/j.issn.1000-6613.2017-1448

Previous Articles     Next Articles

Synthesis of hierarchical ZnCo2O4 miroflowers assembled by mesoporous nanosheets and their applications in high specific energy lithium ion battery

WANG Tianxing, WANG Hequan   

  1. School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
  • Received:2017-07-13 Revised:2017-09-30 Online:2018-06-05 Published:2018-06-05

介孔纳米片构筑具有微纳分级结构的ZnCo2O4微米花及制备高比能锂离子电池

王天星, 王贺权   

  1. 沈阳航空航天大学机电工程学院, 辽宁 沈阳 110136
  • 通讯作者: 王贺权,教授,研究方向为新能源材料。
  • 作者简介:王天星(1992-),男,硕士研究生。E-mail:wangtianxing66@126.com。
  • 基金资助:
    航空科学基金项目(2015ZF54031)。

Abstract: Herein,we report a simple hydrothermal route for the synthesis of hierarchical ZnCo2O4 microflowers assembled by mesoporous nanosheets. This unique hierarchical structure has desired structural characteristics for the high-performance anode materials:mesopores of 4-12nm are distributed on 90nm thick nanosheets which can provide large surface area to contact with electrolyte,and continuous electron pathway and short lithium-ion diffusion. In addition,the assembled microflowers possess good stability to avoid aggregation through 3D assembly. Thanks to these structural features,they demonstrate superior high charge/discharge capability,good cycling stability and rate capability when applied as lithium-ion batteries electrodes. For example,they can deliver a capacity of 935mAh/g after 140 cycles at 200mA/g,and 567.4mAh/g over 250 cycles at 1000mA/g.

Key words: zinc cobalt, lithium-ion battery, nanosheets, hydrothermal synthesis, surface, precipitation, anode

摘要: 报道了用水热法合成具有微纳分级结构的ZnCo2O4微米花,这种微纳分级结构在纳米尺度上是平均厚度为90nm的纳米片,并且纳米片上分布着4~12nm的介孔,借此可以极大地提高电极材料与电解液的接触面积;卷曲的纳米片进一步组装成尺度为2~4μm的具有玫瑰花状的微米花,通过微米尺度的3D结构可以防止电极材料在充放电过程中发生堆叠。研究表明这种微纳分级结构的电极材料适用于制备高比能的锂离子电池,并表现出良好的充放电能力、循环稳定性和倍率性能。如在200mA/g电流密度下经140次循环后放电容量高达935mAh/g;在1000mA/g电流密度下经250次循环后放电容量仍达到567.4mAh/g。

关键词: 钴酸锌, 锂离子电池, 纳米片, 水热法, 表面, 沉淀, 负极

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd