Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (03): 1001-1007.DOI: 10.16085/j.issn.1000-6613.2017-1086
Previous Articles Next Articles
QIU Shuwei1, REN Tiezhen1,2, LI Jun1
Received:
2017-06-06
Revised:
2017-12-12
Online:
2018-03-05
Published:
2018-03-05
邱书伟1, 任铁真1,2, 李珺1
通讯作者:
任铁真,教授,博士,研究方向为化工、新材料。
作者简介:
邱书伟(1971-),女,硕士,副教授,研究方向为石油、化工材料。E-mail:qshwqq@163.com。
CLC Number:
QIU Shuwei, REN Tiezhen, LI Jun. The latest advances in the modified catalysts for hydrogen production from ammonia decomposition[J]. Chemical Industry and Engineering Progress, 2018, 37(03): 1001-1007.
邱书伟, 任铁真, 李珺. 氨分解制氢催化剂改性研究进展[J]. 化工进展, 2018, 37(03): 1001-1007.
[1] GARCÍA-GARCÍA F R,ÁLVAREZ-RODRÍGUEZ J,RODRIGUEZ-RAMOS I,et al. The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction[J]. Carbon,2010,48(1):267-276. [2] JI J,DUAN X Z,QIAN G,et al. Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition[J]. Catalysis Today,2013,216(11):254-260. [3] 赵朝晖,邹汉波,林维明. La-Co MoNx/CNTs催化剂上氨分解反应的本征动力学[J]. 燃料化学学报,2014,42(6):758-762. ZHAO Z H,ZOU H B,LIN W M. Reaction kinetics of ammonia decomposition over La-CoMoNx/CNTs catalyst[J]. Journal of Fuel Chemistry and Technology,2014,42(6):758-762. [4] ZHANG H,ALHAMED Y A,KOJIMN Y,et al. Structure and catalytic properties of Ni/MWCNTs and Ni/AC catalysts for hydrogen production via ammonia decomposition[J]. International Journal of Hydrogenen Energy,2014,39(1/2):277-287. [5] SILVA H,NIELSEN M G,FIORDALISO E M,et al. Synthesis and characterization of Fe-Ni/γ-Al2O3 egg-shell catalyst for H2 generation by ammoniadecomposition[J]. Applied Catalysis A:General,2015,152(2):266-268. [6] GU Y Q,FU X P,DU P P,et al. In-situ X-ray diffraction study of Co-Al nanocomposites as catalysts for ammonia decomposition[J]. Journal of Physical Chemistry,2015,119(30):1-34. [7] LENDZION-BIELUN Z,PELKA R,CZEKAJIO L. Characterization of FeCo based catalyst for ammonia decomposition. The effect of potassium oxide[J]. Journal of Chemical Technology,2014,16(4):111-116. [8] SU Q,GU L,YAO Y,et al. Layered double hydroxides derived Nix(MgyAlzOn) catalysts:enhanced ammonia decomposition by hydrogen spillover effect[J]. Applied Catalysis B:Environmental,2017,201:451-460. [9] TAGLIAZUCCA V,SCHLICHTE K,SCHÜTH F,et al. Molybdenum-based catalysts for the decomposition of ammonia:in situ X-ray diffraction studies,microstructure,and catalytic properties[J]. Journal of Catalysis,2013,305(9):277-289. [10] VARISLI D,KAYKAC N G.. Hydrogen from ammonia over cobalt incorporated silicate structured catalysts prepared using different cobalt salts[J]. International Journal of Hydrogen Energy,2016,41(14):5955-5968. [11] DUAN X,JI J,QIAN G,et al. Ammonia decomposition on Fe(110),Co(111) and Ni(111) surfaces:a density functional theory study[J]. Journal of Molecular Catalysis A:Chemical,2012,357:81-86. [12] LU A H,NITZ J J,COMOTTI M,et al. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition[J]. Journal of the American Chemical Society,2010,132(40):14152-14162. [13] VARISLI D,KORKUSUZ C,DOGU T. Microwave-assisted ammonia decomposition reaction over iron incorporated mesoporous carbon catalysts[J]. Applied Catalysis B:Environmental,2017,201:370-380. [14] REN S,HUANG F,ZHENG J,et al. Ruthenium supported on nitrogen-doped ordered mesoporous carbon as highly active catalyst for NH3 decomposition to H2[J]. International Journal of Hydrogen Energy,2017,42:5105-5113. [15] SCHUTH F,PALKOVITS R,SCHLOGL R,et al. Ammonia as a possible element in an energy infrastructure:catalysts for ammonia decomposition[J]. Energy Environ. Sci.,2012,5(4):6278-6289. [16] HILL A K,TORRENTE-MURCIANO L. Low temperature H2 production from ammonia using ruthenium-based catalysts:synergetic effect of promoter and support[J]. Applied Catalysis B:Environmental,2015,18:129-135. [17] 赵朝晖,邹汉波,陈胜洲,等. 碳纳米管负载金属氮化物催化剂的制备及其性能研究[J]. 功能材料,2010,41(2):338-340. ZHAO Z H,ZOU H B,CHEN S Z,et al. Preparation and catalytic activity of metal nitrides supported on CNTs[J]. Journal of Functional Materials,2010,41(2):338-340. [18] ESRAFILI M D,NURAZAR R. Catalytic decomposition of ammonia over silicon-carbide nanotube:a DFT study[J]. Struct. Chem.,2015,26(3):1-9. [19] MENG T,XU Q Q,LI Y T,et al. Nickle nanoparticles highly dispersed on reduced graphene oxide for ammonia decomposition to hydrogen[J]. Journal of Industrial and Engineering Chemistry,2015,32:373-379. [20] LI G,NAGASAWA H,KANEZASHI M,et al. Graphene nanosheets supporting Ru nanoparticles with controlled nanoarchitectures form a high performance catalyst for COx-free hydrogen production from ammonia[J]. J. Mater. Chem. A,2014,2(24):9185-9192. [21] GRISHIN M V,GATIM A K,SLUTSKⅡ V G,et al. Effect of the substrate material on the catalytic decomposition of ammonia on organoboron nanoparticles[J]. Russian Journal of Physical Chemistry B,2015,9(4):596-600. [22] CHANG F,GUO J,WU G,et al. Covalent triazine-based framework as an ecient catalyst support for ammonia decomposition[J]. RSC Adv.,2014,5(5):3605-3610. [23] KOMINAMI H,NISHIMUNE H,OHTA Y,et al. Photocatalytic hydrogen formation from ammonia and methyl amine in an aqueous suspension of metal-loaded titanium(Ⅳ)oxide particles[J]. Applied Catalysis B:Environmental,2012,111/112(2):297-302. [24] DENG Q F,ZHANG H,HOU X X,et al. High-surface-area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy,2012,37(12):15901-15907. [25] LI G,KANEZASHI M,LEE H R,et al. Preparation of a novel bimodal catalytic membrane reactor and its application to ammonia decomposition for COx-free hydrogen production[J]. International Journal of Hydrogen Energy,2012,37(17):12105-12113. [26] SIMONSEN S B,CHAKRABORTY D,CHORKENDORFF I,et al. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition[J]. Applied Catalysis A:General,2012,447/448(24):22-31. [27] PODILA S,ALHAMED Y A,ALZAHRANI A A,et al. Hydrogen production by ammonia decomposition using Co catalyst supported on Mg mixed oxide systems[J]. International Journal of Hydrogen Energy,2015,40(45):15411-15422. [28] PODILA S,DRISS H,ZAMAN S F,et al. Hydrogen generation by ammonia decomposition using Co/MgO-La2O3 catalyst:influence of support calcination atmosphere[J]. Journal of Molecular Catalysis A:Chemical,2016,414:130-139. [29] YAO L H,LI Y X,ZHAO J,et al. Core-shell structured nanoparticles (M@SiO2,Al2O3,MgO;M=Fe,Co,Ni,Ru) and their application in COx-free H2 production via NH3 decomposition[J]. Catalysis Today,2010,158(3/4):401-408. [30] YAO L H,SHI T,LI Y,et al. Core-shell structured nickel and ruthenium nanoparticles:very active and stable catalysts for the generation of COx-free hydrogen via ammonia decomposition[J]. Catalysis Today,2011,164(1):112-118. [31] ZHANG L F,LI M,REN T Z,et al. Ce-modified Ni nanoparticles encapsulated in SiO2 for COx-free hydrogen production via ammonia decomposition[J]. International Journal of Hydrogen Energy,2015,40(6):2648-2656. [32] WANG L,ZHAO Y,LIU C,et al. Plasma driven ammonia decomposition on a Fe-catalyst:eliminating surface nitrogen poisoning[J]. Chemical Communications,2013,49(36):787-789. [33] WANG L,YI Y,ZHAO Y,et al. NH3 decomposition for H2 generation:effects of cheap metals and supports on plasma−catalyst synergy[J]. ACS Catal,2015,5(7):4167-4174. [34] 张园园,丁彤,祁晓烨,等. 载体结构对钙钛矿氨分解催化活性的影响[J]. 化学工业与工程,2016,33(4):23-27. ZHANG Y Y,DING T,QI X,et al. Effection of tructure of support on ammonia decomposition[J]. Chemical Industry and Engineering,2016,33(4):23-27. [35] DUAN X Z,QIAN G,ZHOU X G,et al. MCM-41 supported Co-Mo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition[J]. Chemical Engineering Journal,2012,207/208:103-108. [36] LI L,ZHU Z H,LU G Q,et al. Catalytic ammonia decomposition over CMK-3 supported Ru catalysts:effects of surface treatments of supports[J]. Carbon,2007,45(1):11-20. [37] WU H J,WANG L D,WANG Y M, et al. Flower-like α-Fe2O3/ordered mesoporous carbon nanocomposite and its enhanced microwave absorption property[J]. Material Research Innovations,2014,18(4):273-279. [38] HILL A K,TORRENTE-MURCIANO L. In-situ H2 production via low temperature decomposition of ammonia:insights into the role of cesium as a promoter[J]. International Journal of Hydrogen Energy,2014,39(15):7646-7654. [39] 陈为强,丁彤,马智,等. 钡离子对镍基钙钛矿分解氨的影响[J]. 化工进展,2015,34(10):3676-3679. CHEN W Q,DING T,MA Z,et al. Decomposition of ammonia by bariumions on the nickel-based perovskite[J]. Chemical Industry and Engineering Progress,2015,34(10):3676-3679. [40] TSUBOUCHI N,HASHIMOTO H,OHTSUKA Y. High catalytic performance of magnesium cations-added limonite in the decomposition of ammonia in a simulated syngas-rich fuel gas[J]. Journal of Molecular Catalysis A:Chemical,2015,407:75-80. [41] OKURA K,OKANISHI T,MUROYAMA H,et al. Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst[J]. Applied Catalysis A:General, 2015,505:77-85. [42] RELI M,AMBROZOVÁ N,ŠIHOR M,et al. Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia[J]. Applied Catalysis B:Environmental,2015,178:108-116. [43] OBATA K,KISHISHITA K,OKEMOTO A,et al. Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe[J]. Applied Catalysis B:Environmental,2014,160/161(1):200-203. [44] NAGAOKA K,EBOSHI T,ABE N,et al. Influence of basic dopants on the activity of Ru/Pr6O11 for hydrogen production by ammonia decomposition[J]. International Journal of Hydrogen Energy, 2014,39(35):20731-20735. [45] BAJUS S,AGEL F,KUSCHE M,et al. Alkali hydroxide-modified Ru/γ-Al2O3 catalysts for ammonia decompositions[J]. Applied Catalysis A:General, 2016,510:189-195. [46] VARISLI D,ELVERISLI E E. Synthesizing hydrogen from ammonia over Ru incorporated SiO2 type nanocomposite catalysts[J]. International Journal of Hydrogen Energy,2014,39(20):10399-10408. [47] GUO J,CHANG F,WANG P,et al. Highly active MnN-Li2NH composite catalyst for producing COx-free hydrogen[J]. ACS Catalysis,2015,5(5):2708-2713. [48] GUO J,WANG P,WU G,et al. Lithium imide synergy with 3d transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition[J]. Angew. Chem.,2015,127(10):2950-2954. [49] WANG L,CHEN J,GE L,et al. Halloysite-nanotube-supported Ru nanoparticles for ammonia catalytic decomposition to produce COx-free hydrogen[J]. Energy & Fuels,2011,25(8):3408-3416. [50] CAO J L,YAN Z L,DENG Q F,et al. Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition[J]. Catalysis Science & Technology,2013,4(2):361-368. [51] CAO J L,YAN Z L,DENG Q F,et al. Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy, 2014,39(11):5747-5755. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[3] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[4] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[5] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[6] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[7] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[8] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[9] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[10] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[11] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[12] | LIU Liang, WANG Zhaoxi, LI Xinlong, ZHANG Gaoshan, WANG Shouyang, ZHANG Linlin, LU Chang, QING Mengxia. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225. |
[13] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[14] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[15] | WANG Xing, ZHAO Zilong, ZHANG Xiaoshan, WANG Hongjie, DONG Wenyi, CHEN Huihui. Influence of preparation conditions of biochar-supported iron catalyst on its decomplexation of Ni-EDTA and iron-leaching [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4831-4839. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1455
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 468
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |