Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (03): 992-1000.DOI: 10.16085/j.issn.1000-6613.2017-0981
Previous Articles Next Articles
MA Guangyuan, XU Yanfei, WANG Jie, WANG Qiong, ZHENG Ronggui, DING Mingyue
Received:
2017-05-24
Revised:
2017-11-21
Online:
2018-03-05
Published:
2018-03-05
马光远, 徐艳飞, 王捷, 王琼, 郑荣贵, 定明月
通讯作者:
定明月,教授,研究方向为生物质能源。
作者简介:
马光远(1994-),男,硕士研究生。E-mail:maguangyuan@whu.edu.cn。
基金资助:
CLC Number:
MA Guangyuan, XU Yanfei, WANG Jie, WANG Qiong, ZHENG Ronggui, DING Mingyue. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineering Progress, 2018, 37(03): 992-1000.
马光远, 徐艳飞, 王捷, 王琼, 郑荣贵, 定明月. 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展, 2018, 37(03): 992-1000.
[1] GALVIS H M T,BITTER J H,DAVIDIAN T,et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society,2012,134(39):16207-16215. [2] LIU Y,CHEN J,BAO J,et al. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catalysis,2015,5(6):3905-3909. [3] GALVIS H M T,BITTER J H,KHARE C B,et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835-838. [4] GALVIS H M T,DE JONG K P. Catalysts for production of lower olefins from synthesis gas:a review[J]. ACS Catalysis,2013,3(9):2130-2149. [5] SHARIFI PAJAIE H,TAGHIZADEH M. Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34[J]. Reaction Kinetics,Mechanisms and Catalysis,2016,118(2):701-717. [6] LI Y,TU J,WANG T,et al. Production of light olefins from biosyngas by two-stage catalytic conversion process via dimethyl ether[J]. Chinese Journal of Chemical Physics,2014,27(2):227-232. [7] LEE Y,PARK J,JUN K,et al. Enhanced production of C2-C4 olefins directly from synthesis gas[J]. Catalysis Letters,2008,126(1/2):149-154. [8] PARK J,LEE Y,JUN K,et al. Direct conversion of synthesis gas to light olefins using dual bed reactor[J]. Journal of Industrial and Engineering Chemistry,2009,15(6):847-853. [9] YU Y,XU Y,CHENG D,et al. Transformation of syngas to light hydrocarbons over bifunctional CuO-ZnO/SAPO-34 catalysts:the effect of preparation methods[J]. Reaction Kinetics,Mechanisms and Catalysis,2014,112(2):489-497. [10] CHENG K,GU B,LIU X,et al. Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie-International Edition,2016,55(15):4725-4728. [11] JIAO F,LI J,PAN X,et al. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065-1068. [12] DING Y. Co2C nanoprisms for syngas conversion to lower olefins with high selectivity[J]. Chinese Journal of Catalysis,2017,38(1):1-4. [13] ZHONG L,YU F,AN Y,et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84-87. [14] ZHANG Q,KANG J,WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:tuning the product selectivity[J]. ChemCatChem,2010,2(9):1030-1058. [15] CHEN X,DENG D,PAN X,et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chemical Communications,2015,51(1):217-220. [16] ZHANG J,FANG K,ZHANG K,et al. Carbon dispersed iron-manganese catalyst for light olefin synthesis from CO hydrogenation[J]. Korean Journal of Chemical Engineering,2009,26(3):890-894. [17] SUN J,CHEN Y,CHEN J. Towards stable Fe-based catalysts with suitable active phase for Fischer-Tropsch synthesis to lower olefins[J]. Catalysis Communications,2017,91:34-37. [18] GALVIS H M T,KOEKEN A C J,BITTER J H,et al. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Catalysis Today,2013,215:95-102. [19] DE SMIT E,WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis:on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews,2008,37(12):2758-2781. [20] FU D,DAI W,XU X,et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando raman spectroscopy[J]. ChemCatChem,2015,7(5):752-756. [21] ZHAI P,XU C,GAO R,et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition,2016,55(34):9902-9907. [22] WANG D,CHEN B,DUAN X,et al. Iron-based Fischer-Tropsch synthesis of lower olefins:the nature of χ-Fe5C2 catalyst and why and how to introduce promoters[J]. Journal of Energy Chemistry,2016,24:911-916. [23] CHENG Y,LIN J,XU K,et al. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts[J]. ACS Catalysis,2016,6(1):389-399. [24] YANG C,ZHAO H,HOU Y,et al. Fe5C2 nanoparticles:a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society,2012,134(38):15814-15821. [25] ZHANG J,MA L,FAN S,et al. Synthesis of light olefins from CO hydrogenation over Fe-Mn catalysts:effect of carburization pretreatment[J]. Fuel,2013,109:116-123. [26] ZHANG Y,MA L,WANG T,et al. Synthesis of Ag promoted porous Fe3O4 microspheres with tunable pore size as catalysts for Fischer-Tropsch production of lower olefins[J]. Catalysis Communications,2015,64:32-36. [27] DAS S K,MOHANTY P,MAJHI S,et al. CO-hydrogenation over silica supported iron based catalysts:influence of potassium loading[J]. Applied Energy,2013,111:267-276. [28] LI J,MA H,ZHANG H,et al. Sodium promoter on iron-based catalyst for direct catalytic synthesis of light alkenes from syngas[J]. Fuel Processing Technology,2014,125:119-124. [29] GALVIS H M T,KOEKEN A C J,BITTER J H,et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Catalysis,2013,303:22-30. [30] DUAN X,WANG D,QIAN G,et al. Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Energy Chemistry,2016,25(2):311-317. [31] XIONG H,MOTCHELAHO M A,MOYO M,et al. Effect of group I alkali metal promoters on Fe/CNT catalysts in Fischer-Tropsch synthesis[J]. Fuel,2015,150:687-696. [32] POUR A N,SHAHRI S M K,BOZORGZADEH H R,et al. Effect of Mg,La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis[J]. Applied Catalysis A:General,2008,348(2):201-208. [33] CHENG Y,LIN J,WU T,et al. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Applied Catalysis B:Environmental,2017,204:475-485. [34] LI T,WANG H,YANG Y,et al. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis[J]. Journal of Energy Chemistry,2013,22(4):624-632. [35] XU J,ZHU K,WENG X,et al. Carbon nanotube-supported Fe-Mn nanoparticles:a model catalyst for direct conversion of syngas to lower olefins[J]. Catalysis Today,2013,215:86-94. [36] HADADZADEH H,MIRZAEI A A,MORSHEDI M,et al. The effect of H2S on the selectivity of light alkenes in the Fe-Mn-catalyzed Fischer-Tropsch synthesis[J]. Petroleum Chemistry,2010,50(1):78-86. [37] XU J,CHANG Z,ZHU K,et al. Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis A:General,2016,514:103-113. [38] OSCHATZ M,KRANS N,XIE J,et al. Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer-Tropsch to olefins reaction[J]. Journal of Energy Chemistry,2016,25(6):985-993. [39] TIHAY F,ROGER A C,KIENNEMANN A,et al. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catalysis Today,2000,58(4):263-269. [40] WANG G,ZHANG K,LIU P,et al. Synthesis of light olefins from syngas over Fe-Mn-V-K catalysts in the slurry phase[J]. Journal of Industrial and Engineering Chemistry,2013,19(3):961-965. [41] ZHANG J,FAN S,ZHAO T,et al. Carbon modified Fe-Mn-K catalyst for the synthesis of light olefins from CO hydrogenation[J]. Reaction Kinetics,Mechanisms and Catalysis,2011,102(2):437-445. [42] WANG D,JI J,CHEN B,et al. Novel Fe/MnK-CNTs nanocomposites as catalysts for direct production of lower olefins from syngas[J]. AIChE Journal,2016,63(1):154-161. [43] YANG Z,PAN X,WANG J,et al. FeN particles confined inside CNT for light olefin synthesis from syngas:effects of Mn and K additives[J]. Catalysis Today,2012,186(1):121-127. [44] CHEN X,DENG D,PAN X,et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis,2015,36(9):1631-1637. [45] HAN L,WANG C,DING J,et al. Microfibrous-structured Al-fiber@ns-Al2O3 core-shell composite functionalized by Fe-Mn-K via surface impregnation combustion:as-burnt catalysts for synthesis of light olefins from syngas[J]. RSC Advances,2016,6(12):9743-9752. [46] HAN L,WANG C,ZHAO G,et al. Microstructured Al-fiber@meso-Al2O3@Fe-Mn-K Fischer-Tropsch catalyst for lower olefins[J]. AIChE Journal,2016,62(3):742-752. [47] ZHOU X,JI J,WANG D,et al. Hierarchical structured alpha-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins[J]. Chemical Communications,2015,51(42):8853-8856. [48] OSCHATZ M,HOFMANN J P,VAN DEELEN T W,et al. Effects of the functionalization of the ordered mesoporous carbon support surface on iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. ChemCatChem,2017,9(s1):620-628. [49] BRUCE L,HOPE G,TURNEY T. Light olefin production from CO/H2 over silica supported Fe/Mn/K catalysts derived from a bimetallic carbonyl anion,[Fe2Mn(CO)12]−[J]. Reaction Kinetics & Catalysis Letters,1982,20(1/2):175-180. [50] KOEKEN A C J,GALVIS H M T,DAVIDIAN T,et al. Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas[J]. Angewandte Chemie-International Edition,2012,51(29):7190-7193. [51] TIAN Z,WANG C,SI Z,et al. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method[J]. Applied Catalysis A:General,2017,541:50-59. [52] LU J,HU R,ZHUO O,et al. Influence of preparation methods on catalytic performance of fe/ncnts fischer-tropsch catalysts[J]. Acta Chimica Sinica,2014,72(9):1017-1022. [53] LU J,YANG L,XU B,et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron fischer-tropsch catalysts for lower olefins[J]. ACS Catalysis,2014,4(2):613-621. [54] OSCHATZ M,LAMME W S,XIE J,et al. Ordered mesoporous materials as supports for stable iron catalysts in the fischer-tropsch synthesis of lower olefins[J]. ChemCatChem,2016,8(17):2846-2852. [55] OSCHATZ M,VAN DEELEN T W,WEBER J L,et al. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas[J]. Catal. Sci. Technol.,2016,6(24):8464-8473. [56] KANG S,BAE J W,SAI PRASAD P S,et al. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catalysis Letters,2008,125(3/4):264-270. [57] JIANG N,YANG G,ZHANG X,et al. A novel silicalite-1 zeolite shell encapsulated iron-based catalyst for controlling synthesis of light alkenes from syngas[J]. Catalysis Communications,2011,12(11):951-954. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 669
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 311
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |