[1] GALVIS H M T,BITTER J H,DAVIDIAN T,et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society,2012,134(39):16207-16215.
[2] LIU Y,CHEN J,BAO J,et al. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catalysis,2015,5(6):3905-3909.
[3] GALVIS H M T,BITTER J H,KHARE C B,et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835-838.
[4] GALVIS H M T,DE JONG K P. Catalysts for production of lower olefins from synthesis gas:a review[J]. ACS Catalysis,2013,3(9):2130-2149.
[5] SHARIFI PAJAIE H,TAGHIZADEH M. Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34[J]. Reaction Kinetics,Mechanisms and Catalysis,2016,118(2):701-717.
[6] LI Y,TU J,WANG T,et al. Production of light olefins from biosyngas by two-stage catalytic conversion process via dimethyl ether[J]. Chinese Journal of Chemical Physics,2014,27(2):227-232.
[7] LEE Y,PARK J,JUN K,et al. Enhanced production of C2-C4 olefins directly from synthesis gas[J]. Catalysis Letters,2008,126(1/2):149-154.
[8] PARK J,LEE Y,JUN K,et al. Direct conversion of synthesis gas to light olefins using dual bed reactor[J]. Journal of Industrial and Engineering Chemistry,2009,15(6):847-853.
[9] YU Y,XU Y,CHENG D,et al. Transformation of syngas to light hydrocarbons over bifunctional CuO-ZnO/SAPO-34 catalysts:the effect of preparation methods[J]. Reaction Kinetics,Mechanisms and Catalysis,2014,112(2):489-497.
[10] CHENG K,GU B,LIU X,et al. Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie-International Edition,2016,55(15):4725-4728.
[11] JIAO F,LI J,PAN X,et al. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065-1068.
[12] DING Y. Co2C nanoprisms for syngas conversion to lower olefins with high selectivity[J]. Chinese Journal of Catalysis,2017,38(1):1-4.
[13] ZHONG L,YU F,AN Y,et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84-87.
[14] ZHANG Q,KANG J,WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:tuning the product selectivity[J]. ChemCatChem,2010,2(9):1030-1058.
[15] CHEN X,DENG D,PAN X,et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chemical Communications,2015,51(1):217-220.
[16] ZHANG J,FANG K,ZHANG K,et al. Carbon dispersed iron-manganese catalyst for light olefin synthesis from CO hydrogenation[J]. Korean Journal of Chemical Engineering,2009,26(3):890-894.
[17] SUN J,CHEN Y,CHEN J. Towards stable Fe-based catalysts with suitable active phase for Fischer-Tropsch synthesis to lower olefins[J]. Catalysis Communications,2017,91:34-37.
[18] GALVIS H M T,KOEKEN A C J,BITTER J H,et al. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Catalysis Today,2013,215:95-102.
[19] DE SMIT E,WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis:on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews,2008,37(12):2758-2781.
[20] FU D,DAI W,XU X,et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando raman spectroscopy[J]. ChemCatChem,2015,7(5):752-756.
[21] ZHAI P,XU C,GAO R,et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition,2016,55(34):9902-9907.
[22] WANG D,CHEN B,DUAN X,et al. Iron-based Fischer-Tropsch synthesis of lower olefins:the nature of χ-Fe5C2 catalyst and why and how to introduce promoters[J]. Journal of Energy Chemistry,2016,24:911-916.
[23] CHENG Y,LIN J,XU K,et al. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts[J]. ACS Catalysis,2016,6(1):389-399.
[24] YANG C,ZHAO H,HOU Y,et al. Fe5C2 nanoparticles:a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society,2012,134(38):15814-15821.
[25] ZHANG J,MA L,FAN S,et al. Synthesis of light olefins from CO hydrogenation over Fe-Mn catalysts:effect of carburization pretreatment[J]. Fuel,2013,109:116-123.
[26] ZHANG Y,MA L,WANG T,et al. Synthesis of Ag promoted porous Fe3O4 microspheres with tunable pore size as catalysts for Fischer-Tropsch production of lower olefins[J]. Catalysis Communications,2015,64:32-36.
[27] DAS S K,MOHANTY P,MAJHI S,et al. CO-hydrogenation over silica supported iron based catalysts:influence of potassium loading[J]. Applied Energy,2013,111:267-276.
[28] LI J,MA H,ZHANG H,et al. Sodium promoter on iron-based catalyst for direct catalytic synthesis of light alkenes from syngas[J]. Fuel Processing Technology,2014,125:119-124.
[29] GALVIS H M T,KOEKEN A C J,BITTER J H,et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Catalysis,2013,303:22-30.
[30] DUAN X,WANG D,QIAN G,et al. Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Energy Chemistry,2016,25(2):311-317.
[31] XIONG H,MOTCHELAHO M A,MOYO M,et al. Effect of group I alkali metal promoters on Fe/CNT catalysts in Fischer-Tropsch synthesis[J]. Fuel,2015,150:687-696.
[32] POUR A N,SHAHRI S M K,BOZORGZADEH H R,et al. Effect of Mg,La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis[J]. Applied Catalysis A:General,2008,348(2):201-208.
[33] CHENG Y,LIN J,WU T,et al. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Applied Catalysis B:Environmental,2017,204:475-485.
[34] LI T,WANG H,YANG Y,et al. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis[J]. Journal of Energy Chemistry,2013,22(4):624-632.
[35] XU J,ZHU K,WENG X,et al. Carbon nanotube-supported Fe-Mn nanoparticles:a model catalyst for direct conversion of syngas to lower olefins[J]. Catalysis Today,2013,215:86-94.
[36] HADADZADEH H,MIRZAEI A A,MORSHEDI M,et al. The effect of H2S on the selectivity of light alkenes in the Fe-Mn-catalyzed Fischer-Tropsch synthesis[J]. Petroleum Chemistry,2010,50(1):78-86.
[37] XU J,CHANG Z,ZHU K,et al. Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis A:General,2016,514:103-113.
[38] OSCHATZ M,KRANS N,XIE J,et al. Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer-Tropsch to olefins reaction[J]. Journal of Energy Chemistry,2016,25(6):985-993.
[39] TIHAY F,ROGER A C,KIENNEMANN A,et al. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catalysis Today,2000,58(4):263-269.
[40] WANG G,ZHANG K,LIU P,et al. Synthesis of light olefins from syngas over Fe-Mn-V-K catalysts in the slurry phase[J]. Journal of Industrial and Engineering Chemistry,2013,19(3):961-965.
[41] ZHANG J,FAN S,ZHAO T,et al. Carbon modified Fe-Mn-K catalyst for the synthesis of light olefins from CO hydrogenation[J]. Reaction Kinetics,Mechanisms and Catalysis,2011,102(2):437-445.
[42] WANG D,JI J,CHEN B,et al. Novel Fe/MnK-CNTs nanocomposites as catalysts for direct production of lower olefins from syngas[J]. AIChE Journal,2016,63(1):154-161.
[43] YANG Z,PAN X,WANG J,et al. FeN particles confined inside CNT for light olefin synthesis from syngas:effects of Mn and K additives[J]. Catalysis Today,2012,186(1):121-127.
[44] CHEN X,DENG D,PAN X,et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis,2015,36(9):1631-1637.
[45] HAN L,WANG C,DING J,et al. Microfibrous-structured Al-fiber@ns-Al2O3 core-shell composite functionalized by Fe-Mn-K via surface impregnation combustion:as-burnt catalysts for synthesis of light olefins from syngas[J]. RSC Advances,2016,6(12):9743-9752.
[46] HAN L,WANG C,ZHAO G,et al. Microstructured Al-fiber@meso-Al2O3@Fe-Mn-K Fischer-Tropsch catalyst for lower olefins[J]. AIChE Journal,2016,62(3):742-752.
[47] ZHOU X,JI J,WANG D,et al. Hierarchical structured alpha-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins[J]. Chemical Communications,2015,51(42):8853-8856.
[48] OSCHATZ M,HOFMANN J P,VAN DEELEN T W,et al. Effects of the functionalization of the ordered mesoporous carbon support surface on iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. ChemCatChem,2017,9(s1):620-628.
[49] BRUCE L,HOPE G,TURNEY T. Light olefin production from CO/H2 over silica supported Fe/Mn/K catalysts derived from a bimetallic carbonyl anion,[Fe2Mn(CO)12]−[J]. Reaction Kinetics & Catalysis Letters,1982,20(1/2):175-180.
[50] KOEKEN A C J,GALVIS H M T,DAVIDIAN T,et al. Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas[J]. Angewandte Chemie-International Edition,2012,51(29):7190-7193.
[51] TIAN Z,WANG C,SI Z,et al. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method[J]. Applied Catalysis A:General,2017,541:50-59.
[52] LU J,HU R,ZHUO O,et al. Influence of preparation methods on catalytic performance of fe/ncnts fischer-tropsch catalysts[J]. Acta Chimica Sinica,2014,72(9):1017-1022.
[53] LU J,YANG L,XU B,et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron fischer-tropsch catalysts for lower olefins[J]. ACS Catalysis,2014,4(2):613-621.
[54] OSCHATZ M,LAMME W S,XIE J,et al. Ordered mesoporous materials as supports for stable iron catalysts in the fischer-tropsch synthesis of lower olefins[J]. ChemCatChem,2016,8(17):2846-2852.
[55] OSCHATZ M,VAN DEELEN T W,WEBER J L,et al. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas[J]. Catal. Sci. Technol.,2016,6(24):8464-8473.
[56] KANG S,BAE J W,SAI PRASAD P S,et al. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catalysis Letters,2008,125(3/4):264-270.
[57] JIANG N,YANG G,ZHANG X,et al. A novel silicalite-1 zeolite shell encapsulated iron-based catalyst for controlling synthesis of light alkenes from syngas[J]. Catalysis Communications,2011,12(11):951-954. |