[1] HUTCHINS O. Method for the production of silicon tetrachlorid:US1271713[P]. 1918-07-09.
[2] 张瑞军,周斌.一种新型碳材料-碳化物衍生碳的研究进展[J].燕山大学学报, 2011, 35(4):283-289. ZHANG R J, ZHOU B. Review of a new carbon material:carbide-derived carbon[J]. Journal of Yanshan University, 2011, 35(4):283-289.
[3] 周海朝. 碳化钛衍生碳的微观结构及摩擦学性能研究[D]. 秦皇岛:燕山大学, 2012. ZHOU H C. The structure and tribological properties of titanium carbide-carbon[D]. Qinhuangdao:Yanshan University, 2012.
[4] 徐江.碳化物衍生碳的形成机理及其超级电容性能研究[D].秦皇岛:燕山大学, 2015. XU J. Mechanism of formation and supercapacitive performance of carbide-derived carbon[D]. Qinhuangdao:Yanshan University, 2015.
[5] ZHANG H B, HU C F, LV J J, et al. Microstructure and adsorption property of nanocarbide-derived carbon(CDC) synthesized at ambient temperature[J]. Materials Letters, 2014, 130:188-191.
[6] 段力群, 马青松, 陈朝辉. CDC法制备纳米多孔碳研究进展[J]. 无机材料学报, 2013, 28(10):1051-1056. DUAN L Q, MA Q S, CHEN Z H. Progress on fabrication of nanoporous carbon via CDC method[J]. Journal of Inorganic Materials, 2013, 28(10):1051-1056.
[7] WANG T H, NAVARRETELOPEZ A M, LI S, et al. Hydrolysis of TiCl4:initial steps in the production of TiO2[J]. Journal of Physical Chemistry A, 2010, 114(28):7561-7570.
[8] 徐斌,曹高萍.碳化物衍生炭[J].新型炭材料, 2008, 23(1):95-96. XU B, CAO G P. Carbide-derived carbon[J]. New Carbon, 2008, 23(1):95-96.
[9] HOFFMAN E N, YUSHIN G, ELGAGHY T, et al. Micro and mesoporosity of carbon derived from ternary and binary metal carbides[J]. Microporous and Mesoporous Materials, 2008, 112(1-3):526-532.
[10] 戴春岭, 王先友, 黄庆华, 等. 新型多孔碳材料-碳化物骨架碳[J]. 化学进展, 2008, 20(1):42-47. DAI C L, WANG X Y, HUANG Q H, et al. Porous carbide derived carbon[J]. Process in Chemistry, 2008, 20(1):42-47.
[11] EWERT J K, WEINGARTH D, DENNER C, et al. Enhanced capacitance of nitrogen-doped hierarchical porous carbide-derived carbon in matched ionic liquids[J]. Journal of Materials Chemistry A, 2015, 3(37):18906-18912.
[12] BORCHARDT L, OSCHATZ M, GRAETZ S, et al. A hard-templating route towards ordered mesoporous tungsten carbide and carbide-derived carbons[J]. Microporous & Mesoporous Materials, 2014, 186:163-167.
[13] WANG H L, GAO Q M. Synthesis, characterization and energy-related applications of carbide-derived carbons obtained by the chlorination of boron carbide[J]. Carbon, 2009, 47(3):820-828.
[14] VALK P, NERUT J, TALLO I, et al. Structure and stability of partially chlorinated molybdenum carbide composite materials synthesised via high temperature chlorination[J]. Electrochimica Acta, 2016, 191:337-345.
[15] GORDEEV S K, KUKUSHKIN S A, OSIPOV A V, et al. Self-organization in the formation of a nanoporous carbon material[J]. Physics of the Solid State, 2000, 42(12):2314-2317.
[16] PRESSER V, HEON M, GOGOTSI Y. Carbide-derived carbons-From porous networks to nanotubes and graphene[J]. Advanced Functional Materials, 2011, 21(5):810-833.
[17] PALMER J C, LLOBET A, YEON S, et al. Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics[J]. Carbon, 2010, 48(4):1116-1123.
[18] GOGOTSI Y, WELZ S, ERSOY D A, et al. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure[J]. Nature, 2001, 411(6835):283-287.
[19] WELZ S, MCNALLAN M J, GOGOTSI Y. Carbon structures in silicon carbide derived carbon[J]. Journal of Materials Processing Technology, 2006, 179(1):11-22.
[20] YUSHIN G N, HOFFMAN E N, NIKITIN A, et al. Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide[J]. Carbon, 2005, 43(10):2075-2082.
[21] PERKSON A, LEIS J, ARULEPP M, et al. Barrel-like carbon nanoparticles from carbide by catalyst assisted chlorination[J]. Carbon, 2003, 41(9):1729-1735.
[22] PORTET C, KAZACHKIN D, OSSWALD S, et al. Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons[J]. Thermochimica Acta, 2010, 497(1/2):137-142.
[23] KORMANN M, POPOVSKA N. Processing of carbide-derived carbons with enhanced porosity by activation with carbon dioxide[J]. Microporous & Mesoporous Materials, 2010, 130(1):167-173.
[24] SCHMIRLER M, GLENK F, ETZOLD B J M. In-situ thermal activation of carbide-derived carbon[J]. Carbon, 2011, 49(11):3679-3686.
[25] WU H, WANG X Y, WANG X Y, et al. The effect of activation technology on the electrochemical performance of calcium carbide skeleton carbon[J]. Journal of Solid State Electrochemistry, 2012, 16(9):2941-2947.
[26] YAN P T, JIANG X, CHAO W, et al. High-power supercapacitors based on hierarchical porous nanometer-sized silicon carbide-derived carbon[J]. Electrochimica Acta, 2015, 189:16-21.
[27] SEREDYCH M, PORTET C, GOGOTSI Y, et al. Nitrogen modified carbide-derived carbons as adsorbents of hydrogen sulfide[J]. Journal of Colloid & Interface Science, 2008, 330(1):60-66.
[28] MANGARELLA M C, WALTON K S. Tailored Fe3C-derived carbons with embedded Fe nanoparticles for ammonia adsorption[J]. Carbon, 2015, 95:208-219.
[29] WANG H Y, ZHU T L, FAN X, et al. Adsorption and desorption of small molecule volatile organic compounds over carbide-derived carbon[J]. Carbon, 2014, 67(1):712-720.
[30] YACHAMANENIA S, YUSHINB G, YEINA S, et al. Mesoporous carbide-derived carbon for cytokine removal from blood plasma[J]. Biomaterials, 2010, 31(18):4789-4794.
[31] PRESSER V, YEON S, VAKIFAHMETOGLU C, et al. Hierarchical porous carbide-derived carbons for the removal of cytokines from blood plasma[J]. Advanced Healthcare Materials, 2012, 1(6):796-800.
[32] SIGALOV S, LEVI M D, SALITRA G, et al. Selective adsorption of multivalent ions into TiC-derived nanoporous carbon[J]. Carbon, 2012, 50(10):3957-3960.
[33] 耿淑雅.多孔炭材料制备、表面改性及对离子的选择性吸附研究[D].北京:清华大学, 2015. GENG S Y. The preparation and surface functionalization of porous carbon for ions adsorption[D]. Beijing:Tsinghua University, 2015.
[34] HASSE B, GLASEL J, KERN A M, et al. Preparation of carbide-derived carbon supported platinum catalysts[J]. Catalysis Today, 2015, 249:30-37.
[35] WAN C P, ZHANG R X, WANG S L, et al. Molten salt electrolytic fabrication of TiC-CDC and its applications for supercapacitor[J]. Journal of Materials Science & Technology, 2017, 33(8):778-792.
[36] 贾进,杨晓阳,闫艳,等.碳化物衍生碳的制备及其在气体存储与超级电容器领域的应用研究进展[J]. 化工进展, 2014, 33(10):2681-2686. JIA J, YANG X Y, YAN Y, et al. Progress of preparation of carbide-derived carbon and application in gas storage and supercapacitors[J]. Chemical Industry and Engineering Progress, 2014, 33(10):2681-2686.
[37] YUSHIN G, DASH R, JAGIELLO J, et al. Carbide-derived carbons:effect of pore size on hydrogen uptake and heat of adsorption[J]. Advanced Functional Materials, 2006, 16(17):2288-2293.
[38] PALM R, TALLO I, ROMANN T, et al. Methane adsorption on specially designed TiC and Mo2C derived carbons with different pore size and surface morphology[J]. Microporous & Mesoporous Materials, 2015, 218(4):167-173.
[39] PRESSER V, MCDONOUGH J, YEON S, et al. Effect of pore size on carbon dioxide sorption by carbide derived carbon[J]. Energy & Environmental Science, 2011, 4(8):3059-3066.
[40] XING W, LIU C, ZHOU Z Y, et al. Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons[J]. Nanoscale Research Letters, 2014, 9(1):189-196.
[41] FISCHER C, OSCHATZ M, NICKEL W, et al. Bioinspired carbide-derived carbons with hierarchical pore structure for the adsorptive removal of mercury from aqueous solution[J]. Chemical Communications, 2017, 53(35):4845-4848.
[42] SHALLY G, ASHISH Y, SHIV S, et al. Synthesis of silicon carbide-derived carbon as an electrode of a microbial fuel cell and an adsorbent of aqueous Cr(Ⅵ)[J]. Industrial & Engineering Chemistry Research, 2017, 56(5):1233-1244. |