1 |
BETTS R A, JONES C D, KNIGHT J R, et al. El Niño and a record CO2 rise[J]. Nature Climate Change, 2016, 6(9): 806-810.
|
2 |
HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97.
|
3 |
LI J, ZHANG X, SHEN J, et al. Dissociation of CO2 by thermal plasma with contracting nozzle quenching[J]. Journal of CO2 Utilization, 2017, 21: 72-76.
|
4 |
PERATHONER S, CENTI G. CO2 recycling: a key strategy to introduce green energy in the chemical production chain[J]. ChemSusChem, 2014, 7(5): 1274-1282.
|
5 |
WANG W, QU Z, SONG L, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction[J]. Journal of Energy Chemistry, 2020, 40(1): 22-30.
|
6 |
王有和, 吴成成, 刘忠文, 等. 甲醇制烯烃反应工艺、反应机理及其动力学研究进展[J]. 工业催化, 2018, 26(1): 13-21.
|
|
WANG Youhe, WU Chengcheng, LIU Zhongwen, et al. Progresses in reaction processes, mechanism and kinetics of methanol to olefins[J]. Industrial Catalysis, 2018, 26(1): 13-21.
|
7 |
WANG S, WEI Z, CHEN Y, et al. Methanol to Olefins over H-MCM-22 zeolite: theoretical study on the catalytic roles of various pores[J]. ACS Catalysis, 2015, 5(2): 1131-1144.
|
8 |
KAR S, KOTHANDARAMAN J, GOEPPERT A, et al. Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol[J]. Journal of CO2 Utilization, 2018, 23: 212-218.
|
9 |
高鹏, 李枫, 赵宁, 等. 以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报, 2014, 30(6): 1155-1162.
|
|
GAO Peng, LI Feng, ZHAO Ning, et al. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1155-1162.
|
10 |
BAHRUJI H, BOWKER M, HUTCHINGS G, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2016, 343: 133-146.
|
11 |
BONGERS W, BOUWMEESTER H, WOLF B, et al. Plasma-driven dissociation of CO2 for fuel synthesis[J]. Plasma Processes and Polymers, 2017, 14(6): 1600126.
|
12 |
BELOV I, VERMEIREN V, PAULUSSEN S, et al. Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations[J]. Journal of CO2 Utilization, 2018, 24: 386-397.
|
13 |
WANG L, YI Y, WU C, et al. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis[J]. Angewandte Chemie, 2017, 56(44): 13679-13683.
|
14 |
陈亮, 鲁群苟, 胡辉, 等. 直流电晕等离子体重整甲烷二氧化碳制取合成气的研究[J]. 应用化工, 2018, 47(9): 1947-1951.
|
|
CHEN Liang, LU Qungou, HU Hui, et al. Study on CO2 reforming of CH4 to make synthesis gas by DC corona plasma[J]. Applied Chemical Industry, 2018, 47(9): 1947-1951.
|
15 |
CHEN P, SHEN J, RAN T, et al. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 123-128.
|
16 |
DURME J V, DEWULF J, LEYS C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 324-333.
|
17 |
CHE F, GRAY J T, HA S, et al. Catalytic water dehydrogenation and formation on nickel: dual path mechanism in high electric fields[J]. Journal of Catalysis, 2015, 332: 187-200.
|
18 |
MEI D, ZHU X, WU C, et al. Plasma-photocatalytic conversion of CO2 at low temperatures: understanding the synergistic effect of plasma-catalysis[J]. Applied Catalysis B: Environmental, 2016, 182: 525-532.
|
19 |
CHEN G, BRITUN N, GODFROID T, et al. An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis[J]. Journal of Physics D: Applied Physics, 2017, 50(8): 084001.
|
20 |
MICHIELSEN I, UYTDENHOUWEN Y, PYPE J, et al. CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis[J]. Chemical Engineering Journal, 2017, 326: 477-488.
|
21 |
WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290.
|
22 |
郭利, 向小凤, 伍星, 等. 非平衡碘负离子转化二氧化碳[J]. 化工学报, 2012, 63(10): 3297-3303.
|
|
GUO Li, XIANG Xiaofeng, WU Xing, et al. Conversion of carbon dioxide with non-equilibrium electronegative ions of iodine[J]. CIESC Journal, 2012, 63(10): 3297-3303.
|
23 |
ZHAO B, LIU Y, ZHU Z, et al. Highly selective conversion of CO2 into ethanol on Cu/ZnO/Al2O3 catalyst with the assistance of plasma[J]. Journal of CO2 Utilization, 2018, 24: 34-39.
|
24 |
GUO L, MA X, XIA Y, et al. A novel method of production of ethanol by carbon dioxide with steam[J]. Fuel, 2015, 158: 843-847.
|
25 |
CIMINO A, STONE F S. Oxide solid solutions as catalysts[J]. Advances in Catalysis, 2002, 47: 141-306.
|
26 |
SINGHAL A. Study of electronic and magnetic properties of vacuum annealed Cr doped ZnO[J]. Journal of Alloys and Compounds, 2012, 515(1): 12-15.
|
27 |
VELU S, SUZUKI K, GOPINATH C S, et al. XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxidecatalysts[J]. Physical Chemistry Chemical Physics, 2002, 4(10): 1990-1999.
|
28 |
JIN Y, CUI Q, WEN G, et al. XPS and Raman scattering studies of room temperature ferromagnetic ZnO: Cu[J]. Journal of Physics D: Applied Physics, 2009, 42(21): 215007.
|
29 |
SUN J, ZHU K, GAO F, et al. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOzmixed oxides with balanced acid-base sites[J]. Journal of the American Chemical Society, 2011, 133(29): 11096-11099.
|
30 |
MILLAR G J, ROCHESTER C H, BAILEY S, et al. Combined temperature-programmed desorption and fourier-transform infrared spectroscopy study of CO2, CO and H2 interactions with model ZnO/SiO2, Cu/SiO2 and Cu/ZnO/SiO2 methanol synthesis catalysts[J]. Journal of the Chemical Society, Faraday Transactions, 1993, 89(7): 1109-1115.
|