化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 356-363.DOI: 10.16085/j.issn.1000-6613.2021-0756
收稿日期:
2021-04-11
修回日期:
2021-05-08
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
宋小三
作者简介:
水博阳(1998—),男,硕士研究生,研究方向为水处理理论与技术。E-mail:基金资助:
SHUI Boyang1,2(), SONG Xiaosan1,2(
), FAN Wenjiang3
Received:
2021-04-11
Revised:
2021-05-08
Online:
2021-11-12
Published:
2021-11-12
Contact:
SONG Xiaosan
摘要:
利用太阳光去除有机污染物和有害细菌的光催化技术一直被认为是水处理中最有使用价值的技术之一,因为其具有操作简便、不引入二次污染、能源清洁等优点而在环境净化领域具有巨大的应用潜力,近些年在水和空气净化中被广泛研究。本文介绍了光催化技术的基本机理并分析了影响光催化效率的因素,总结了包括表面光敏化、离子掺杂改性等提高光催化效率的手段,回顾了近些年光催化技术在饮用水处理及废水处理领域当中的研究应用情况,将光催化技术与生物法、膜法等传统技术结合应用并对其机理进行探究,有助于进一步发展基于可见光作为清洁、可再生能源驱动的光催化环境修复技术。重点关注光催化技术在环境保护,尤其是水处理领域的发展潜力,并对于光催化技术未来的发展方向进行了展望。
中图分类号:
水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363.
SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 356-363.
半导体光催化材料 | 禁带宽度/eV | 半导体光催化材料 | 禁带宽度/eV |
---|---|---|---|
TiO2 | 3.2 | Bi2O3 | 2.5~2.8 |
ZnO | 3.2 | WO3 | 2.5 |
g-C3N4 | 2.7~2.8 | CdS | 2.4 |
FeO | 2.4 | Bi2WO3 | 2.9 |
Fe2O3 | 2.2 | Ga2O3 | 4.8 |
表1 常见半导体材料禁带宽度
半导体光催化材料 | 禁带宽度/eV | 半导体光催化材料 | 禁带宽度/eV |
---|---|---|---|
TiO2 | 3.2 | Bi2O3 | 2.5~2.8 |
ZnO | 3.2 | WO3 | 2.5 |
g-C3N4 | 2.7~2.8 | CdS | 2.4 |
FeO | 2.4 | Bi2WO3 | 2.9 |
Fe2O3 | 2.2 | Ga2O3 | 4.8 |
1 | DONG S, FENG J, FAN M, et al. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review [J]. RSC Advances, 2015, 5(19): 14610-14630. |
2 | 谷学谦, 董秀芹, 张敏华, 等. 固定化光催化氧化技术研究进展 [J]. 化学反应工程与工艺, 2003, 19(4): 379-384. |
GU Xueqian, DONG Xiuqin, ZHANG Minhua, et al. Research progress of immobilized photocatalytic oxidation technology [J]. Chemical Reaction Engineering and Technology, 2003, 19(4): 379-384. | |
3 | 郑猛猛. 半导体异质结光催化剂的制备及其可见光催化性能研究 [D]. 广州: 华南理工大学, 2016. |
ZHENG Mengmeng. Preparation of semiconductor heterojunction photocatalyst and its visible light catalytic performance [D].Guangzhou: South China University of Technology, 2016. | |
4 | 王丹军, 张洁, 郭莉,等. 基于能带结构理论的半导体光催化材料改性策略 [J]. 无机材料学报, 2015, 30(7): 683-693. |
WANG Danjun, ZHANG Jie, GUO Li, et al. Modification strategy of semiconductor photocatalytic materials based on energy band structure theory [J]. Journal of Inorganic Materials, 2015, 30(7): 683-693. | |
5 | 李贞燕, 陈冰. 纳米二氧化钛光催化氧化油田采出水中萘和芴的影响因素分析 [J]. 环境工程学报, 2015, 9(5): 2106-2112. |
LI Zhenyan, CHEN Bing. Analysis of influencing factors of nano-titanium dioxide photocatalytic oxidation of naphthalene and fluorene in oil field produced water [J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2106-2112. | |
6 | JITPUTTI J, SUZUKI Y, YOSHIKAWA S. Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution [J]. Catalysis Communications, 2008, 9(6): 1265-1271. |
7 | DIEBOLD U. The surface science of titanium dioxide [J]. Surface Science Reports, 2003, 48(5-8): 53-229. |
8 | ZHANG S, GU P, MA R, et al. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review [J]. Catalysis Today, 2019, 335:65-77. |
9 | 黄飞, 李祺, 罗森, 等. ZnIn2S4/MIL-125复合纳米材料的制备及光催化活性[J]. 硅酸盐学报, 2021,49(6):1-9. |
HUANG Fei, LI Qi, LUO Sen, et al. Preparation and photocatalytic activity of ZnIn2S4/MIL-125 composite nanomaterials [J]. Journal of the Chinese Ceramic Society, 2021, 49(6):, 1-9. | |
10 | PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications [J]. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 2013, 15(8): 1-20. |
11 | 林容斌. 染料敏化的MOFs光催化剂的合成、表征及其光催化性能研究[D]. 金华: 浙江师范大学, 2019. |
LIN Rongbin. Synthesis, characterization and photocatalytic performance of dye-sensitized MOFs photocatalyst[D]. Jinhua: Zhejiang Normal University, 2019. | |
12 | LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews Journal, 2015, 44(1): 362-381. |
13 | MARTINDALE B C, HUTTON G A, CAPUTO C A, et al. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst [J]. Journal of the American Chemical Society, 2015, 137(18): 6018-6025. |
14 | GUPTA S, TOMAR M, GUPTA V. Enhanced magnetic and electric properties of nanocrystalline Ce modified BFO thin films [J]. Ferroelectrics, 2014, 470(1): 272-279. |
15 | 黄仕元, 王振宇, 李胜, 等. 铁酸铋光催化剂改性的研究进展 [J]. 精细化工, 2021, 38(1): 17-22. |
HUANG Shiyuan, WANG Zhenyu, LI Sheng, et al. Research progress on modification of bismuth ferrite photocatalyst [J]. Fine Chemicals, 2021, 38(1): 17-22. | |
16 | MAULIDIYAH, AZIS T, NURWAHIDAH A T, et al. Photoelectrocatalyst of Fe co-doped N-TiO2 /Ti nanotubes: pesticide degradation of thiamethoxam under UV-visible lights [J]. Environmental Nanotechnology, Monitoring & Management, 2017, 8:103-111. |
17 | ZOU M, XIONG F, GANESHRAJA A S, et al. Visible light photocatalysts (Fe, N): TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres [J]. Materials Chemistry and Physics, 2017, 195:259-267. |
18 | YUAN R, ZHOU B, HUA D, et al. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification [J]. Journal of Hazardous Materials, 2013, 262:527-538. |
19 | YUAN R, WANG S, LIU D, et al. Effect of the wavelength on the pathways of 2-MIB and geosmin photocatalytic oxidation in the presence of Fe-N co-doped TiO2[J]. Chemical Engineering Journal, 2018, 353:319-328. |
20 | 李龙. 异质结构复合半导体光催化性能研究 [J]. 广州化工, 2017, 45(2): 22-24. |
LI Long. Study on the photocatalytic performance of heterostructure compound semiconductors [J]. Guangzhou Chemical Industry, 2017, 45(2): 22-24. | |
21 | CHENG J, SHEN Y, CHEN K, et al. Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation [J]. Chinese Journal of Catalysis, 2018, 39(4): 810-820. |
22 | YAPARATNE S, TRIPP C P, AMIRBAHMAN A. Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts [J]. Journal of Hazardous Materials, 2018, 346: 208-217. |
23 | 何菲, 孟爱云, 程蓓, 等. 石墨烯修饰三氧化钨/二氧化钛S型异质结增强的光催化产氢活性(英文) [J]. 催化学报, 2020, 41(1): 13-24. |
HE Fei, MENG Aiyun, CHENG Bei, et al. Enhanced photocatalytic hydrogen production activity of graphene-modified tungsten trioxide/titanium dioxide S-type heterojunction (English) [J]. Chinese Journal of Catalysis, 2020, 41(1): 13-24. | |
24 | 薛金娟. 基于贵金属的复合光催化材料的制备及其性能研究[D]. 南京: 东南大学, 2016. |
XUE Jinjuan. Preparation and performance study of composite photocatalytic materials based on precious metals [D]. Nanjing: Southeast University, 2016. | |
25 | DUAN Y, LUO J, ZHOU S, et al. TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO [J]. Applied Catalysis B: Environmental, 2018, 234:206-212. |
26 | LAWTON L. The destruction of 2-methylisoborneol and geosmin using titanium dioxide photocatalysis [J]. Applied Catalysis B: Environmental, 2003, 44(1): 9-13. |
27 | FOTIOU T, TRIANTIS T M, KALOUDIS T, et al. Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: intermediates and degradation pathways [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286:1-9. |
28 | 周舟. ICPB技术去除两种典型异嗅物质的性能研究 [D].杭州: 浙江大学, 2020. |
ZHOU Zhou. Research on the performance of ICPB technology to remove two typical odorous substances [D]. Hangzhou: Zhejiang University, 2020. | |
29 | 刘芭. TiO2光催化杂化超滤膜对水中嗅味物质及腐殖酸去除的研究 [D]. 上海: 上海交通大学, 2013. |
LIU Ba. Study on the removal of odorants and humic acid by TiO2 photocatalytic hybrid ultrafiltration membrane [D]. Shanghai: Shanghai Jiaotong University, 2013. | |
30 | MAHON J MAC, PILLAI S C, KELLY J M, et al. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, PhiX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system [J]. Journal of Photochemistry and Photobiology B, 2017, 170:79-90. |
31 | 于小迪, 王洪波, 刘麒, 等. 二氧化钛光催化消毒技术在水处理中的研究 [J]. 环境科学与管理, 2013, 38(1): 81-86. |
YU Xiaodi, WANG Hongbo, LIU Qi, et al. Research on titanium dioxide photocatalytic disinfection technology in water treatment [J]. Environmental Science and Management, 2013, 38(1): 81-86. | |
32 | CHENG Rong, SHEN Liangjie, YU Jinhui, et al. Photocatalytic inactivation of bacteriophage f2 with Ag3PO4/g-C3N4 composite under visible light irradiation: performance and mechanism[J]. Catalysts, 2018, 8(10): 406-421. |
33 | 王晓婷, 刘洪君, 李映辉, 等. 连续流光催化消毒器灭活E.coli及病毒的性能 [J]. 环境科学学报, 2018, 38(9): 3645-3651. |
WANG Xiaoting, LIU Hongjun, LI Yinghui, et al. Inactivation of E. coli and viruses by continuous stream photocatalytic disinfector [J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3645-3651. | |
34 | 钟欣, 阮韬, 白壑平,等. 铜掺杂钒酸铋光催化降解橙黄Ⅱ废水及其机理 [J]. 环境工程学报, 2021, 15(3): 857-866. |
ZHONG Xin, RUAN Tao, BAI Heping, et al. Photocatalytic degradation of orange-yellow Ⅱ wastewater by copper-doped bismuth vanadate and its mechanism [J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 857-866. | |
35 | 彭小明, 罗文栋, 胡玉瑛, 等. 磷掺杂的介孔石墨相氮化碳光催化降解染料 [J]. 中国环境科学, 2019, 39(8): 3277-3285. |
PENG Xiaoming, LUO Wendong, HU Yuying, et al. Phosphorus-doped mesoporous graphite phase carbon nitride photocatalytic degradation of dyes [J]. China Environmental Science, 2019, 39(8): 3277-3285. | |
36 | CHEN S, ZAFFRAN J, YANG B. Descriptor design in the computational screening of Ni-based catalysts with balanced activity and stability for dry reforming of methane reaction [J]. ACS Catalysis, 2020, 10(5): 3074-3083. |
37 | CHEN W, YANG Z, XIE Z, et al. Benzothiadiazole functionalized D-A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(Ⅵ) [J]. Journal of Materials Chemistry A, 2019, 7(3): 998-1004. |
38 | YOU S, HU Y, LIU X, et al. Synergetic removal of Pb(Ⅱ) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light [J]. Applied Catalysis B: Environmental, 2018, 232:288-298. |
39 | 李小燕, 陈超, 刘义保, 等. CuO/BiFeO3异质结光催化还原溶液中U(Ⅵ)的性能 [J]. 中国有色金属学报, 2020, 30(6): 1389-1398. |
LI Xiaoyan, CHEN Chao, LIU Yibao, et al. Performance of CuO/BiFeO3 heterojunction photocatalytic reduction of U(Ⅵ) in solution [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1389-1398. | |
40 | ADHAM S, HUSSAIN A, MINIER-MATAR J, et al. Membrane applications and opportunities for water management in the oil & gas industry [J]. Desalination, 2018, 440: 2-17. |
41 | 胡天佑, 唐瑾, 陈志莉. 石油工业含油废水处理进展[J].水处理技术, 2021, 47(6): 12-17. |
HU Tianyou, TANG Jin, CHEN Zhili. Progress in oily wastewater treatment in petroleum industry[J]. Water Treatment Technology, 2021,47(6): 12-17. | |
42 | SHAHREZAEI F, MANSOURI Y, ZINATIZADEH A A L, et al. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles [J]. Powder Technology, 2012, 221: 203-212. |
43 | 张运鸽. 用于含油废水净化的TiO2光催化复合材料的研究 [D]. 天津: 天津大学, 2015. |
ZHANG Yunge. Research on TiO2 photocatalytic composite material for purification of oily wastewater [D]. Tianjin: Tianjin University, 2015. | |
44 | MOKHBI Y, KORICHI M, AKCHICHE Z. Combined photocatalytic and Fenton oxidation for oily wastewater treatment [J]. Applied Water Science, 2019, 9(2): 35. |
45 | OCHIAI T, FUJISHIMA A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(4): 247-262. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[12] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3056
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1669
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |