化工进展 ›› 2021, Vol. 40 ›› Issue (2): 824-834.DOI: 10.16085/j.issn.1000-6613.2020-0710
王彤1(), 安华良1,2, 李芳1,2, 薛伟1,2(), 王延吉1,2
收稿日期:
2020-04-29
修回日期:
2020-09-26
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
薛伟
作者简介:
王彤(1991—),女,博士研究生,研究方向为绿色化工。E-mail:基金资助:
Tong WANG1(), Hualiang AN1,2, Fang LI1,2, Wei XUE1,2(), Yanji WANG1,2
Received:
2020-04-29
Revised:
2020-09-26
Online:
2021-02-05
Published:
2021-02-09
Contact:
Wei XUE
摘要:
随着化石能源的日益短缺,清洁可再生生物质资源的利用,尤其是制备高品质生物燃料逐渐成为研究热点。2,5-二甲基呋喃(DMF)具有优良的物理化学性质,被认为是最有前途的液体生物燃料之一,可通过生物质平台分子5-羟甲基糠醛(HMF)选择性氢解制备。HMF化学性质非常活泼,可以转化成多种下游产品,因此设计制备高选择性催化剂对于靶向合成DMF至关重要。本文依据贵金属和非贵金属对催化剂进行分类,详细综述了非均相催化剂在HMF氢解制备DMF反应中的研究新进展;针对目前研究中存在的局限性和问题,提出了催化剂和反应体系的研究方向。此外,指出以生物质为原料直接制备DMF及建立有效的分离技术是实现DMF工业化生产的重要途径。
中图分类号:
王彤, 安华良, 李芳, 薛伟, 王延吉. 非均相催化剂催化5-羟甲基糠醛氢解制备2,5-二甲基呋喃研究进展[J]. 化工进展, 2021, 40(2): 824-834.
Tong WANG, Hualiang AN, Fang LI, Wei XUE, Yanji WANG. Research progress of the heterogeneous catalysts for 2,5-dimethylfuran synthesis via hydrogenolysis of 5-hydroxymethylfufural[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 824-834.
催化剂 | 氢供体 | 温度/℃ | 反应时间/h | HMF转化率/% | DMF产率/% | 参考文献 |
---|---|---|---|---|---|---|
Ru/C+RuO2 | 异丙醇 | 190 | 6 | 100 | 72 | [ |
r-Ru2@MSC-30 | H2(0.5MPa) | 125 | 1 | 100 | 69.52 | [ |
Ru-ZrO2-MCM-41 | H2(1.5MPa) | 160 | 1 | 100 | 90 | [ |
Ru@Mg(Al)O | 异丙醇 | 220 | 5 | — | 14 | [ |
Ru-MoOx/C | H2(1.5MPa) | 180 | 1 | 100 | 79.8 | [ |
RuCo/CoOx | H2(0.5MPa) | 200 | 2 | 100 | 96.5 | [ |
Pt-Co/MWCNTs | H2(1MPa) | 160 | 8 | 100 | 92.3 | [ |
Pt3Co2 | H2(3.3MPa) | 160 | — | 100 | 98 | [ |
Pt3Ni/C | H2(3.3MPa) | 200 | — | 100 | 98 | [ |
PtCu/C | H2(3.3MPa) | 200 | — | 100 | 96 | [ |
Pt2Zn/C | H2(3.3MPa) | 200 | — | 100 | 97 | [ |
PtCo/HCS | H2(1MPa) | 180 | 2 | 100 | 98 | [ |
Pd/Fe2O3 | 异丙醇 | 180 | 24 | 100 | 72 | [ |
Pd/C | H2(1MPa) | 80 | 2 | 100 | 100 | [ |
Pd/C | H2(2MPa) | 120 | 15 | 95 | 85 | [ |
Pd-Co9S8/S-CNT | H2(0.3MPa) | 120 | 13 | 96 | 83.7 | [ |
Pd50Au50/C | H2(0.1MPa) | 60 | 6 | >99 | >99 | [ |
PdAu4/GC800 | H2(1MPa) | 150 | 4 | 86.8 | 81.9 | [ |
Pd-Cs2.5H0.5PW12O40/K-10 | H2(1MPa) | 90 | 2 | 98 | 79 | [ |
Pd/C/Zn | H2(0.8MPa) | 150 | 8 | >99 | 85 | [ |
Cu-Pd@C | H2(1.5MPa) | 120 | 7 | 100 | 96 | [ |
Pd/Co-CoOx@NC | H2(1.5MPa) | 180 | 2 | 100 | 97.8 | [ |
Raney Ni | H2(1.5MPa) | 180 | 15 | 100 | 88.5 | [ |
Ni-Al2O3 | H2(1.2MPa) | 180 | 4 | 100 | 91.5 | [ |
NiSi-PS | H2(1.5MPa) | 130 | 3 | 100 | 72.9 | [ |
7Ni-30W2C/AC | H2(4MPa) | 180 | 3 | 100 | 96 | [ |
2%Ni-20%Co/C | 甲酸 | 210 | 24 | 99 | 90 | [ |
Ni-OMD3 | H2(3MPa) | 200 | 6 | >99.9 | 98.7 | [ |
Ni/ZrP | H2(3MPa) | 240 | 20 | 100 | 68.1 | [ |
Ni/ZSM-5 | H2(0.25MPa) | 180 | 7 | 91.2 | 96.2 | [ |
Ni/TiO2 | H2(3MPa) | 220 | 2 | 100 | 85 | [ |
Ni/C | H2(4.5MPa) | 180 | 2 | 100 | 75 | [ |
Ni@SAZn-PC | H2(0.6MPa) | 150 | 1 | 56 | 50 | [ |
NiCu3/C | H2(3.3MPa) | 180 | — | 100 | 98.7 | [ |
Ni2-Fe1/CNTs | H2(3MPa) | 200 | 3 | 100 | 91.3 | [ |
Cu-PMO | 甲醇 | 260 | 3 | 100 | 48 | [ |
Cu20-Ru2-PMO | H2(5MPa) | 220 | 1 | 100 | 62.6 | [ |
Cu/Al2O3 | 甲醇 | 240 | 6 | >99.9 | 73.9 | [ |
NC-Cu/MgAlO | 环己醇 | 220 | 0.5 | 100 | 96.1 | [ |
Co@Cu/3CoAlOx | H2(1.5MPa) | 180 | 5 | >99 | 98.5 | [ |
CuZn | H2(2MPa) | 200 | 6 | 100 | 89 | [ |
CnZn-2 | H2(1.5MPa) | 220 | 5 | 100 | 91.8 | [ |
CuZnO(P) | H2(3MPa) | 220 | 100 | 79 | [ | |
CuCo?/NGr/α-Al2O3 | H2(2MPa) | 180 | 6 | 100 | >99 | [ |
Cu-Co@C(Cu∶Co=1∶3) | H2(5MPa) | 180 | 8 | 100 | 99.4 | [ |
CuZnCox | 乙醇 | 210 | 5 | 100 | 99 | [ |
FeNx/C | H2(4MPa) | 240 | 5 | 100 | 86.2 | [ |
Fe-N-C | H2(4MPa) | 240 | 3 | 100 | 85.7 | [ |
Fe-Co-Ni/h-BN | H2(2MPa) | 180 | 4.5 | 100 | 94 | [ |
Co-CoOx | H2(1MPa) | 170 | 12 | 100 | 83.3 | [ |
Co@NGs | H2(2MPa) | 200 | 6 | 99.9 | 94.7 | [ |
20Co/β-DAC723R | H2(1.5MPa) | 150 | 3 | 100 | 83.1 | [ |
Co-(ZnO-ZnAl2O4) | H2(0.7MPa) | 130 | 6 | 100 | 74.2 | [ |
表1 用于HMF氢解制备DMF的非均相催化剂
催化剂 | 氢供体 | 温度/℃ | 反应时间/h | HMF转化率/% | DMF产率/% | 参考文献 |
---|---|---|---|---|---|---|
Ru/C+RuO2 | 异丙醇 | 190 | 6 | 100 | 72 | [ |
r-Ru2@MSC-30 | H2(0.5MPa) | 125 | 1 | 100 | 69.52 | [ |
Ru-ZrO2-MCM-41 | H2(1.5MPa) | 160 | 1 | 100 | 90 | [ |
Ru@Mg(Al)O | 异丙醇 | 220 | 5 | — | 14 | [ |
Ru-MoOx/C | H2(1.5MPa) | 180 | 1 | 100 | 79.8 | [ |
RuCo/CoOx | H2(0.5MPa) | 200 | 2 | 100 | 96.5 | [ |
Pt-Co/MWCNTs | H2(1MPa) | 160 | 8 | 100 | 92.3 | [ |
Pt3Co2 | H2(3.3MPa) | 160 | — | 100 | 98 | [ |
Pt3Ni/C | H2(3.3MPa) | 200 | — | 100 | 98 | [ |
PtCu/C | H2(3.3MPa) | 200 | — | 100 | 96 | [ |
Pt2Zn/C | H2(3.3MPa) | 200 | — | 100 | 97 | [ |
PtCo/HCS | H2(1MPa) | 180 | 2 | 100 | 98 | [ |
Pd/Fe2O3 | 异丙醇 | 180 | 24 | 100 | 72 | [ |
Pd/C | H2(1MPa) | 80 | 2 | 100 | 100 | [ |
Pd/C | H2(2MPa) | 120 | 15 | 95 | 85 | [ |
Pd-Co9S8/S-CNT | H2(0.3MPa) | 120 | 13 | 96 | 83.7 | [ |
Pd50Au50/C | H2(0.1MPa) | 60 | 6 | >99 | >99 | [ |
PdAu4/GC800 | H2(1MPa) | 150 | 4 | 86.8 | 81.9 | [ |
Pd-Cs2.5H0.5PW12O40/K-10 | H2(1MPa) | 90 | 2 | 98 | 79 | [ |
Pd/C/Zn | H2(0.8MPa) | 150 | 8 | >99 | 85 | [ |
Cu-Pd@C | H2(1.5MPa) | 120 | 7 | 100 | 96 | [ |
Pd/Co-CoOx@NC | H2(1.5MPa) | 180 | 2 | 100 | 97.8 | [ |
Raney Ni | H2(1.5MPa) | 180 | 15 | 100 | 88.5 | [ |
Ni-Al2O3 | H2(1.2MPa) | 180 | 4 | 100 | 91.5 | [ |
NiSi-PS | H2(1.5MPa) | 130 | 3 | 100 | 72.9 | [ |
7Ni-30W2C/AC | H2(4MPa) | 180 | 3 | 100 | 96 | [ |
2%Ni-20%Co/C | 甲酸 | 210 | 24 | 99 | 90 | [ |
Ni-OMD3 | H2(3MPa) | 200 | 6 | >99.9 | 98.7 | [ |
Ni/ZrP | H2(3MPa) | 240 | 20 | 100 | 68.1 | [ |
Ni/ZSM-5 | H2(0.25MPa) | 180 | 7 | 91.2 | 96.2 | [ |
Ni/TiO2 | H2(3MPa) | 220 | 2 | 100 | 85 | [ |
Ni/C | H2(4.5MPa) | 180 | 2 | 100 | 75 | [ |
Ni@SAZn-PC | H2(0.6MPa) | 150 | 1 | 56 | 50 | [ |
NiCu3/C | H2(3.3MPa) | 180 | — | 100 | 98.7 | [ |
Ni2-Fe1/CNTs | H2(3MPa) | 200 | 3 | 100 | 91.3 | [ |
Cu-PMO | 甲醇 | 260 | 3 | 100 | 48 | [ |
Cu20-Ru2-PMO | H2(5MPa) | 220 | 1 | 100 | 62.6 | [ |
Cu/Al2O3 | 甲醇 | 240 | 6 | >99.9 | 73.9 | [ |
NC-Cu/MgAlO | 环己醇 | 220 | 0.5 | 100 | 96.1 | [ |
Co@Cu/3CoAlOx | H2(1.5MPa) | 180 | 5 | >99 | 98.5 | [ |
CuZn | H2(2MPa) | 200 | 6 | 100 | 89 | [ |
CnZn-2 | H2(1.5MPa) | 220 | 5 | 100 | 91.8 | [ |
CuZnO(P) | H2(3MPa) | 220 | 100 | 79 | [ | |
CuCo?/NGr/α-Al2O3 | H2(2MPa) | 180 | 6 | 100 | >99 | [ |
Cu-Co@C(Cu∶Co=1∶3) | H2(5MPa) | 180 | 8 | 100 | 99.4 | [ |
CuZnCox | 乙醇 | 210 | 5 | 100 | 99 | [ |
FeNx/C | H2(4MPa) | 240 | 5 | 100 | 86.2 | [ |
Fe-N-C | H2(4MPa) | 240 | 3 | 100 | 85.7 | [ |
Fe-Co-Ni/h-BN | H2(2MPa) | 180 | 4.5 | 100 | 94 | [ |
Co-CoOx | H2(1MPa) | 170 | 12 | 100 | 83.3 | [ |
Co@NGs | H2(2MPa) | 200 | 6 | 99.9 | 94.7 | [ |
20Co/β-DAC723R | H2(1.5MPa) | 150 | 3 | 100 | 83.1 | [ |
Co-(ZnO-ZnAl2O4) | H2(0.7MPa) | 130 | 6 | 100 | 74.2 | [ |
1 | BICKER M, HIRTH J, VOGEL H. Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone[J]. Green Chemistry, 2003, 5(2): 280-284. |
2 | RINALDI R, SCHÜTH F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes[J]. ChemSusChem, 2009, 2: 1096-1107. |
3 | 方向晨. 生物质在能源资源替代中的途径及前景展望[J]. 化工进展, 2011, 30(11): 2333-2339. |
FANG X C. Routes and prospects in the energy resources replacing by biomasses[J]. Chemical Industry and Engineering Progress, 2011, 30(11): 2333-2339. | |
4 | 王泽, 林伟刚, 宋文立, 等. 生物质热化学转化制备生物燃料及化学品[J]. 化学进展, 2007, 19(7): 1190-1197. |
WANG Z, LIN W G, SONG W L, et al. Bio-fuel and chemicals by thermochemical treating of biomass[J]. Progress in Chemistry, 2007, 19(7): 1190-1197. | |
5 | 林鹿, 何北海, 孙润仓, 等. 木质生物质转化高附加值化学品[J]. 化学进展, 2007, 19(7): 1206-1216. |
LIN L, HE B H, SUN R C, et al. High-value chemicals from lignocellulosic biomass[J]. Progress in Chemistry, 2007, 19(7): 1206-1216. | |
6 | SERRANO-RUIZ J C, DUMESIC J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels[J]. Energy & Environmental Science, 2011, 4(1): 83-99. |
7 | ZHANG X H, ZHANG Q, WANG T J, et al. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts[J]. Bioresource Technology, 2013, 134: 73-80. |
8 | NORONHA F B, SCHMAL M, MORAWECK B, et al. Characterization of niobia-supported palladium-cobalt catalysts[J]. The Journal of Physical Chemistry B, 2000, 104(23): 5478-5485. |
9 | SAHA B, ABU-OMAR M M. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates[J]. ChemSusChem, 2015, 8(7): 1133-1142. |
10 | GALKIN K I, ANANIKOV V P. When will 5-hydroxymethylfurfural, the “sleeping giant” of sustainable chemistry, awaken?[J]. ChemSusChem, 2019, 12: 2976-2982. |
11 | WANG X F, LIANG X H, LI J M, et al. Catalytic hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to biofuel 2,5-dimethylfuran[J]. Applied Catalysis A: General, 2019, 576: 85-95. |
12 | TAN J, LIU Q, CHEN L, et al. Efficient production of ethyl levulinate from cassava over Al2(SO4)3 catalyst in ethanol-water system[J]. Journal of Energy Chemistry, 2017, 26(1):115-120. |
13 | ANTONYRAJ C A, JEONG J, KIM B, et al. Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production[J]. Industrial and Engineering Chemistry Research, 2013, 19(3): 1056-1059. |
14 | SHUAI X, ZHOU P, ZHANG Z, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4[J]. Journal of the American Chemical Society, 2017, 139(41): 14775-14782. |
15 | KUBOTA S R, CHOI K S. Electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation[J]. ChemSusChem, 2018, 11(13): 2138-2145. |
16 | ZHANG X Y, ZONG M H, LI N. Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid[J]. Green Chemistry, 2017, 19(19): 4544-4551. |
17 | JAE J, ZHENG W, KARIM A M, et al. The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran[J]. ChemCatChem, 2014, 6(3): 848-856. |
18 | TZENG T W, LIN C Y, PAO C W, et al. Understanding catalytic hydrogenolysis of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) using carbon supported Ru catalysts[J]. Fuel Processing Technology, 2020, 199: 106225. |
19 | RAUT A B, NANDA B, PARIDA K M, et al. Hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to produce 2,5-dimethylfuran over Ru-ZrO2-MCM-41 catalyst[J]. Chemistry Select, 2019, 4(20): 6080-6089. |
20 | NAGPURE A S, VENUGOPAL A K, LUCAS N, et al. Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran[J]. Catalysis Science & Technology, 2015, 5(3): 1463-1472. |
21 | YANG Y, LIU Q Y, LI D, et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran on Ru-MoOx/C catalysts[J]. RSC Advances, 2017, 7(27): 16311-16318. |
22 | GAO Z, FAN G, LIU M, et al. Dandelion-like cobalt oxide microsphere-supported RuCo bimetallic catalyst for highly efficient hydrogenolysis of 5-hydroxymethylfurfural[J]. Applied Catalysis B: Environmental, 2018, 237(5): 649-659. |
23 | WANG X, LIU Y, LIANG X. Hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over supported Pt-Co bimetallic catalysts under mild conditions[J]. Green Chemistry, 2018, 20(12): 2894-2902. |
24 | LUO J, YUN H, MIRONENKO A V, et al. Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals[J]. ACS Catalysis, 2016, 6(7): 4095-4104. |
25 | LUO J, LEE J D, YUN H, et al. Base metal-Pt alloys: a general route to high selectivity and stability in the production of biofuels from HMF[J]. Applied Catalysis B: Environmental, 2016, 199(15): 439-446. |
26 | WANG G H, HILGERT J, RICHTER F H, et al. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural[J]. Nature Materials, 2014, 13(3): 293-300. |
27 | SCHOLZ D, AELLIG C, HERMANS I. Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural[J]. ChemSusChem, 2014, 7(1): 268-275. |
28 | CHATTERJEE M, ISHIZAKA T, KAWANAMI H. Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: a tunable approach to dimethylfuran selectivity[J]. Green Chemistry, 2014, 16(3): 1543-1551. |
29 | MITRA J, ZHOU X, RAUCHFUSS T. Pd/C-catalyzed reactions of HMF: decarbonylation, hydrogenation, and hydrogenolysis[J]. Green Chemistry, 2015, 17(1): 307-313. |
30 | LIAO W P, ZHU Z G, CHEN N M, et al. Highly active bifunctional Pd-Co9S8/S-CNT catalysts for selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran[J]. Molecular Catalysis, 2020, 482: 110756. |
31 | NISHIMURA S, IKEDA N, EBITANI K. Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst[J]. Catalysis Today, 2014, 232(1): 89-98. |
32 | ZHANG F, LIU Y, YUAN F, et al. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural in the absence of acid additive over bimetallic PdAu supported on graphitized carbon[J]. Energy and Fuels, 2017, 31(6): 6364-6373. |
33 | GAWADE A B, TIWARI M S, YADAV G D. Biobased green process: selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethyl furan under mild conditions using Pd-Cs2.5H0.5PW12O40/K-10 clay[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(8): 4113-4123. |
34 | SAHA B, BOHN C M, ABU-OMAR M M. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2, 5-dimethylfuran[J]. ChemSusChem, 2014, 7(11): 3095-3101. |
35 | SARKAR C, KOLEY P, SHOWN I, et al. Integration of interfacial and alloy effects to modulate catalytic performance of metal-organic-framework-derived Cu-Pd nanocrystals toward hydrogenolysis of 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry and Engineering, 2019, 7: 10349-10362. |
36 | SHANG Y N, LIU C W, ZHANG Z N, et al. Insights into the synergistic effect in Pd immobilized to MOF-derived Co-CoOx@ N-doped carbon for efficient selective hydrogenolysis of 5-hydroxylmethylfurfural[J]. Industrial and Engineering Chemistry Research, 2020, 59: 6532-6542. |
37 | KONG X, ZHU Y, ZHENG H, et al. Switchable synthesis of 2,5-dimethylfuran and 2,5-dihydroxymethyltetrahydrofuran from 5-hydroxymethylfurfural over Raney Ni catalyst[J]. RSC Advances, 2014, 4(105): 60467-60472. |
38 | KONG X, ZHENG R, ZHU Y, et al. Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural[J]. Green Chemistry, 2015, 17(4): 2504-2514. |
39 | KONG X, ZHU Y, ZHENG H, et al. Ni nanoparticles inlaid nickel phyllosilicate as a metal-acid bifunctional catalyst for low-temperature hydrogenolysis reactions[J]. ACS Catalysis, 2015, 5(10): 5914-5920. |
40 | HUANG Y B, CHEN M Y, YAN L, et al. Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules[J]. ChemSusChem, 2014, 7(4): 1068-1072. |
41 | YANG P, XIA Q, LIU X, et al. High-yield production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over carbon supported Ni-Co bimetallic catalyst[J]. Journal of Energy Chemistry, 2016, 25(6): 1015-1020. |
42 | GOYAL R, SARKAR B, BAG A, et al. Studies of synergy between metal-support interfaces and selective hydrogenation of HMF to DMF in water[J]. Journal of Catalysis, 2016, 340: 248-260. |
43 | ZHU C, LIU Q, LI D, et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni supported on zirconium phosphate catalysts[J]. ACS Omega, 2018, 3(7): 7407-7417. |
44 | SUN Y, XIONG C X, LIU Q C, et al. Catalytic transfer hydrogenolysis/hydrogenation of biomass-derived 5-formyloxymethylfurfural to 2,5-dimethylfuran over Ni-Cu bimetallic catalyst with formic acid as a hydrogen donor[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5414-5422. |
45 | GUO D W, LIU X X, CHENG F, et al. Selective hydrogenolysis of 5-hydroxymethylfurfural to produce biofuel 2,5-dimethylfuran over Ni/ZSM-5 catalysts[J]. Fuel, 2020, 274: 117853. |
46 | PRZYDACZ M, JEDRZEJCZYK M, BRZEZINSKA M, et al. Solvothermal hydrodeoxygenation of hydroxymethylfurfural derived from biomass towards added value chemicals on Ni/TiO2 catalysts[J]. The Journal of Supercritical Fluids, 2020, 163: 104827. |
47 | GYNGAZOVA M S, NEGAHDAR L, BLUMENTHAL L C, et al. Experimental and kinetic analysis of the liquid phase hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over carbon-supported nickel catalysts[J]. Chemical Engineering Science, 2017, 173: 455-464. |
48 | MANI C M, BRAUN M, MOLINARI V, et al. A high-throughput composite catalyst based on nickel carbon cubes for the hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran[J]. ChemCatChem, 2017, 9(17): 3388-3394. |
49 | LUO J, MONAI M, WANG C, et al. Unraveling the surface state and composition of highly selective nanocrystalline Ni-Cu alloy catalysts for hydrodeoxygenation of HMF[J]. Catalysis Science and Technology, 2017, 7(8): 1735-1743. |
50 | YU L, HE L, CHEN J, et al. Robust and recyclable nonprecious bimetallic nanoparticles on carbon nanotubes for the hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural[J]. ChemCatChem, 2015, 7(11): 1701-1707. |
51 | ROMÁN-LESHKOV Y, BARRETT C J, LIU Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-985. |
52 | HANSEN T S, BARTA K, ANASTAS P T, et al. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol[J]. Green Chemistry, 2012, 14(9): 2457-2461. |
53 | KUMALAPUTRI A J, BOTTARI G, ERNE P M, et al. Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides[J]. ChemSusChem, 2014, 7(8): 2266-2275. |
54 | ZHANG Z H, WANG C X, GOU X, et al. Catalytic in-situ hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Cu-based catalysts with methanol as a hydrogen donor[J]. Applied Catalysis A, General, 2019, 570: 245-250. |
55 | GAO Z, LI C, FAN G, et al. Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2,5-dimethylfuran or 2,5-dimethyltetrahydrofuran[J]. Applied Catalysis B: Environmental, 2018, 226: 523-533. |
56 | WANG Q, FENG J T, ZHENG L R, et al. Interfacial structure-determined reaction pathway and selectivity for 5-(hydroxymethyl)furfural hydrogenation over Cu-based catalysts[J]. ACS Catalysis, 2019, 10(2): 1353-1365. |
57 | BOTTARI G, KUMALAPUTRI A J, KRAWCZYK K K, et al. Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural[J]. ChemSusChem, 2015, 8(8): 1323-1327. |
58 | ZHU Y, KONG X, ZHENG H, et al. Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts[J]. Catalysis Science and Technology, 2015, 5(8): 4208-4217. |
59 | BRZEZIŃSKA M, KELLER N, RUPPERT A M. Self-tuned properties of CuZnO catalysts for hydroxymethylfurfural hydrodeoxygenation towards dimethylfuran production[J]. Catalysis Science & Technology, 2020, 10(3): 658-670. |
60 | GUO W W, LIU H Y, ZHANG S Q, et al. Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al2O3[J]. Green Chemistry, 2016, 18(23): 6222-6228. |
61 | CHEN B F, LI F B, HUANG Z J, et al. Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran[J]. Applied Catalysis B: Environmental, 2017, 200: 192-199. |
62 | ZHANG Z H, YAO S Y, WANG C X, et al. CuZnCoOx multifunctional catalyst for in situ hydrogenation of 5-hydroxymethylfurfural with ethanol as hydrogen carrier[J]. Journal of Catalysis, 2019, 373: 314-321. |
63 | LI J, LIU J L, LIU H Y, et al. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over heterogeneous iron catalysts[J]. ChemSusChem, 2017, 10(7): 1436-1447. |
64 | LI J, ZHANG J J, LIU H Y, et al. Graphitic carbon nitride (g-C3N4)-derived Fe-N-C catalysts for selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran[J]. ChemistrySelect, 2017, 2(34): 11062-11070. |
65 | CHEN N M, ZHU Z G, SU T, et al. Catalytic hydrogenolysis of hydroxymethylfurfural to highly selective 2,5-dimethylfuran over FeCoNi/h-BN catalyst[J]. Chemical Engineering Journal, 2020, 381: 122755. |
66 | LI D, LIU Q Y, ZHU C H, et al. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Co3O4 catalyst by controlled reduction[J]. Journal of Energy Chemistry, 2019, 30: 34-41. |
67 | WANG J S, WEI Q H, MA Q X, et al. Constructing Co@N-doped graphene shell catalyst via Mott-Schottky effect for selective hydrogenation of 5-hydroxylmethylfurfural[J]. Applied Catalysis B: Environmental, 2020, 263: 118339-118349. |
68 | CHEN N M, ZHU Z G, MA H K, et al. Catalytic upgrading of biomass-derived 5-hydroxymethylfurfural to biofuel 2,5-dimethylfuran over Beta zeolite supported non-noble Co catalyst[J]. Molecular Catalysis, 2020, 486: 110882. |
69 | AN Z, WANG W L, DONG S H, et al. Well-distributed cobalt-based catalysts derived from layered double hydroxides for efficient selective hydrogenation of 5-hydroxymethyfurfural to 2,5-methylfuran[J]. Catalysis Today, 2019, 319: 128-138. |
70 | 刘迎新,曾茂,楼炯涛,等. 5-羟甲基糠醛选择性加氢制备2,5-二甲基呋喃研究进展[J]. 高校化学工程学报, 2018, 32(2): 255-265. |
LIU Y X, ZENG M, LOU J T, et al. Review on 2,5-dimethylfuran synthesis via selectivity hydrogenation of 5-hydroxymethylfufural[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(2): 255-265. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |