1 |
杨鹏举, 刘道勇, 时鹏. 煤制乙二醇装置运行效果及市场前景分析[J]. 河南化工, 2019, 36(7): 7-9.
|
|
YANG Pengju, LIU Daoyong, SHI Peng. Operation and market analysis of coal-to-ethylene glycol plant[J]. Henan Chemical Industry, 2019, 36(7): 7-9.
|
2 |
YANG Q C, ZHU S, YANG Q, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814.
|
3 |
黄格省, 李振宇, 王建明. 我国现代煤化工产业发展现状及对石油化工产业的影响[J]. 化工进展, 2015, 34(2): 295-302.
|
|
HUANG Gesheng, LI Zhenyu, WANG Jianming. Development status of coal chemical industry in China and its influence on petrochemical industry[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 295-302.
|
4 |
黄格省, 阎捷, 师晓玉, 等. 新能源制氢技术发展现状及前景分析[J]. 石化技术与应用, 2019, 37(5): 289-296.
|
|
HUANG Gesheng, YAN Jie, SHI Xiaoyu, et al. Development status and prospect analysis of hydrogen production with new energy technology[J]. Petrochemical Technology & Application, 2019, 37(5): 289-296.
|
5 |
KIM J, JUN A, GWON O, et al. Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production[J]. Nano Energy, 2018, 44: 121-126.
|
6 |
杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172.
|
|
YANG Qing, XU Simin, ZHANG Dawei, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172.
|
7 |
YANG Q C, ZHANG D W, ZHOU H R, et al. Process simulation, analysis and optimization of a coal to ethylene glycol process[J]. Energy, 2018, 155: 521-534.
|
8 |
朱顺, 郭琦, 张大伟, 等. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
|
|
ZHU Shun, GUO Qi, ZHANG Dawei, et al. Conceptual design and system analysis coal to ethylene glycol process integrated with efficient utilization of CO2[J]. CIESC Journal, 2019, 70(2): 772-779.
|
9 |
YANG Q C, LIU X, ZHU S, et al. Efficient utilization of CO2 in a coal to ethylene glycol process integrated with dry/steam-mixed reforming: conceptual design and technoeconomic analysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3496-3510.
|
10 |
YUE H R, ZHAO Y J, MA X B, et al. Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218.
|
11 |
QIAN Y, MAN Y, PENG L J, et al. Integrated process of coke-oven gas tri-reforming and coal gasification to methanol with high carbon utilization and energy efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2519-2525.
|
12 |
SUN S C, SHAO Z G, YU H M, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack[J]. Journal of Power Sources, 2014, 267: 515-520.
|
13 |
PERNA A, MINUTILLO M, JANNELLI E. Hydrogen from intermittent renewable energy sources as gasification medium in integrated waste gasification combined cycle power plants: a performance comparison[J]. Energy, 2016, 94: 457-465.
|
14 |
IM-ORB K, VISITDUMRONGKUL N, SAEBEA D, et al. Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production[J]. Journal of Cleaner Production, 2018, 170: 1-13.
|
15 |
HAJJAJI N, PONS M N, HOUAS A, et al. Exergy analysis: an efficient tool for understanding and improving hydrogen production via the steam methane reforming process[J]. Energy Policy, 2012, 42: 392-399.
|
16 |
LEI L B, ZHANG J H, YUAN Z H, et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Advanced Functional Materials, 2019, 29(37): 1903805.
|
17 |
ZHANG H F, DESIDERI U. Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers[J]. Energy, 2020, 199: 117498.
|
18 |
ZHANG H F, WANG L G, HERLE J VAN, et al. Techno-economic comparison of green ammonia production processes[J]. Applied Energy, 2020, 259: 114135.
|
19 |
ZHANG H F, WANG L G, HERLE J VAN, et al. Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer[J]. Applied Energy, 2020, 270: 115113.
|
20 |
CINTI G, BALDINELLI A, DI MICHELE A, et al. Integration of solid oxide electrolyzer and Fischer-Tropsch: a sustainable pathway for synthetic fuel[J]. Applied Energy, 2016, 162: 308-320.
|
21 |
ALI S, SØRENSEN K, NIELSEN M P. Modeling a novel combined solid oxide electrolysis cell (SOEC)-biomass gasification renewable methanol production system[J]. Renewable Energy, 2020, 154: 1025-1034.
|
22 |
GIGLIO E, LANZINI A, SANTARELLI M, et al. Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part II—Economic analysis[J]. Journal of Energy Storage, 2015, 2: 64-79.
|
23 |
YANG Q, YANG Q C, XU S M, et al. Technoeconomic and environmental analysis of ethylene glycol production from coal and natural gas compared with oil-based production[J]. Journal of Cleaner Production, 2020, 273: 123120.
|
24 |
CARNEIRO J, GU X K, TEZEL E, et al. Electrochemical reduction of CO2 on metal-based cathode electrocatalysts of solid oxide electrolysis cells[J]. Industrial & Engineering Chemistry Research, 2020, 59(36): 15884-15893.
|
25 |
ZHANG H C, SU S H, CHEN X H, et al. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4298-4307.
|
26 |
LONIS F, TOLA V, CAU G. Renewable methanol production and use through reversible solid oxide cells and recycled CO2 hydrogenation[J]. Fuel, 2019, 246: 500-515.
|
27 |
ZHANG W, CROISET E, DOUGLAS P L, et al. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models[J]. Energy Conversion and Management, 2005, 46(2): 181-196.
|
28 |
CLAUSEN L R, BUTERA G, JENSEN S H. High efficiency SNG production from biomass and electricity by integrating gasification with pressurized solid oxide electrolysis cells[J]. Energy, 2019, 172: 1117-1131.
|
29 |
YI Q, FENG J, LI W Y. Optimization and efficiency analysis of polygeneration system with coke-oven gas and coal gasified gas by Aspen Plus[J]. Fuel, 2012, 96: 131-140.
|
30 |
XIANG D, XIANG J J, SUN Z, et al. The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization[J]. Energy, 2017, 140: 78-91.
|
31 |
ALBRECHT F G, KÖNIG D H, BAUCKS N, et al. A standardized methodology for the techno-economic evaluation of alternative fuels—A case study[J]. Fuel, 2017, 194: 511-526.
|
32 |
ANGHILANTE R, COLOMAR D, BRISSE A, et al. Bottom-up cost evaluation of SOEC systems in the range of 10-100MW[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20309-20322.
|
33 |
LIN M, HAUSSENER S. Techno-economic modeling and optimization of solar-driven high-temperature electrolysis systems[J]. Solar Energy, 2017, 155: 1389-1402.
|
34 |
国家能源局. 2020年光伏电价新政落地分布式补贴下调超五成[EB/OL]. , 2020-04-08.
|
|
National Energy Administration. The new policy of photovoltaic power price will be implemented and the distributed subsidy will be reduced by more than 50% in 2020[EB/OL]. , 2020-04-08.
|